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THE BUCKLING THEQRY OF TURBULENT FLOW 4

A

The research overviewed in this final report had as primary objective the :

establishment of a purely theoretical foundation for the existence of

r“lﬁf“r‘- " ’rJ"

turbulent flows and engineering formulas that summarize the transport

potential of such flows. From the early research - proposal stage, this work }

o
a'w

N reflected my view that "tradition" has given us a fluid mechanics research L.
:: methodology that is generally divorced from thermodynamics, and, with special
regard to turbulence research, a research methodology that is divorced from

% theory. That even the analytical work in 20th century turbulence research is ’
?é rooted in empiricism is best illustrated by how the empirical notion of "eddy" h
; is never questioned and conveniently hidden behind the time-averaged E
i terminolngy inherited from Osborne Reynolds. ?
i The present research project was conducted over the three year period i
, that coincided with the academic years 1980-81, 81-82, and 82-83. A one-year :
;: extension was added to the original contract period in order to facilitate the

i completion of ongoing thesis work and my own writings and preparations for

the 1984 sabbatical leave and move to Duke University. Although the actual

,S work is already documented in detail in the three annual reports [1-3], I ;
. welcome this opportunity to review it one more time and to stress its position T
] relative to pre-1980 thinking. ;
; The present work - the buckling theory of turbulent flow - departs from :
.3 fluids mechanics tradition in two important respects. First, this new theory ;
’ focuses on the equilibrium of a finite-size flow system (e.g., jet, wake, N
;E boundary layer), as opposed to the equilibrium of the infinitesimally small g
g fluid packet used as subject in the Navier-Stokes equations. Second, it ;
f relies on the thermodynamics inspired idea that the flow system possess

conservative mechanical properties (e.g. elasticity in bending) if it is )
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Al ant e

The analytical conclusion of the buckling theory is that an inviscid
stream of finite transversal dimension D can buckle into a sinusoidal shape
whose Tlongitudinal wavelength Ag scales with D. In this manner the buckling
theory unveils two obvious but previously unexplained scales of the stream,
the buckling (meandering) wavelength Ag and the time scale associated with the
growth of the deformation (i.e., the time of eddy formation) tg ~ Ag/(V/2),
where V is the longitudinal velocity scale of the flow. This new theory is

therefore a theory of large scale orderly structure in turbulent flow.

The buckling theory - its enunciation, experimental verification and
application to heat transfer engineering - has been published extensively
through three equally important channels of peer review: journal articles,
listed chronologically as Refs. [4-15], graduate these [16-20] and books
[21-23]. The permanent contact with the research community is greatly
responsible for the diversity of the topics studied from the point of view of
stream bucklirng, and for the balance between the theoretical and experimental
segments of thiy study.

The strategy that served as guide for the definition of individual

research topics during the four-year period consisted of identifying:

1. The boundaries of the new theoretical viewpoint, i.e., how
far the theory extends into the territory that is not

explained by any existing theory.

I1. The intersections between the buckling theory and existing

]
:;
¢
‘
{

theories, i.e., pinpointing the phenomena that are explained

by two theories.

-_e_n

If the domain labeled B in Fig. 1 represents the territory discovered until
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sf“f Figure 1. Charting the domain seen from a new theoretical point of view, and
O discovering the intersections with domains covered by older

. theories.
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today from the point of view of Buckling theory, and if the domain S
represents the things explained by an existing theory (e.g., hydrodynamic
Stability theory), then the phenomenon plotted as point I is an example of
work done on front (I). Specific examples of advances of type I are the
explanation of the observed sinusoidal deformaticn during the transition to
turbulence* (Ref. [22], chapter 6), the Colburn analogy between momentum and
heat transfer in turbulent flow (Ref. [22], chapter 7) and the “entrainment
hypothesis" or the linear time-averaged growth of all turbulent mixing regions
(Ref. [22], chapter 8).

The intersection between the new theory and an existing theory is
represented by points labeled II in Fig. 1. One discovery of type Il is the
notion that the transition to turbulence in flows of many geometries and
origins is associated universally with a "local Reynolds number” of order
0(102) (Ref. [22], chapter 6; the "local Reynolds number" is based on the
local longitudinal velocity scale and the local transversal length scale).
Although this apparently universal criterion of transition to turbulence is
consistent with both theories [10,11], it was first stated in the realm of
buckling theory [4].

As a second example of an advance of type Il - this time an observation
explained by both S and B, but historically stated first in S - 1 use this
opportunity to communicate that the classical Richardson number criterion
regarding the instability of a density-stratified flow follows in very few
steps from the main result of the buckling theory. Consider the inviscid jet
of transversal length scale B and longitudinal velocity V sketched in Fig. 2.

According to the buckling theory, since the stream is inviscid it has the

*  The theory of hydrodynamic stability cannot explain this observation:
recall that in stability theory the "disturbance" shape is arbitrary and
assumed given.
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Figure 2. Determining the criterion for stability in density-stratified
inviscid shear flow via buckling theory.
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property to buckle with a longitudinal wavelength Ag: as demonstrated in
chapter 4 of Ref. [21], the subsequent and certain instability of the
infinitesimally buckled stream can be thought of as the effect of the lateral
net force Fup that acts on a control volume (elbow) of height D and length

A8/2’
Fup ~ pV2Dq . (1)

where the angle a is infinitesimally small.
The lateral instability and eventual roll-up (eddy formation) may not

occur if the flow proceeds through a stably stratified environment
p(y) = eg - by , (2)

where b = - dp/dy > 0. In such cases the finite-size control volume will be

pushed down by a restoring force of order

Fdown ~ AgDgde (3)

where Ap ~ baig is the density defect scale of the control volume,

The condition for stability can then be written sequentially as

Fdown > Fup (4)
AgDgbarg > pV2Da (5)
2
o, 5, By (6)
() '8
P D

The left-hand-side in this inequality is the Richardson number. According to
the buckling theory the right-hand-side is always a constant of order 0(1).
In conclusion, the stability criterion via buckling theory is

Ri > 0(1) (7)

re ey ;- EER b - T T T S S A T - P R et o7 - e S - - .. - -
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The same criterion is a classical result of hydrodynamic stability theory,

however, the analysis summarized as eqs. (1) - (7) is orders of magnitude
simpler than the corresponding hydrodynamic stability analysis.

In conclusion, in Fig. 1 the Richardson number criterion (7) is covered
by theory S and B: this, however, does not mean that theory S alone (or
theory B alene) explains everything about transition in stably stratified
shear flow. For example, theory S still does not explain the regular
sinusoidal deformation that serves as initial condition for hydrodynamic
instability.

The work started on fronts I and II is far from over. The success of
buckling theory and the fact that none of the claims made so far on behalf of
this theory have been proven false in the post-1980 literature, are two good

reasons why this theory will continue to attract attention. Considering the

naked simplicity of buckling theory, and recalling the thermodynamics orgins

of the essential idea, I invite my colleagues to join in this research and to

give new life to the words spoken once by Josiah Willard Gibbs: :
h

"One of the principal objects of theoretical research in
any department of knowledge is to find the point of view

from which the subject appears in its greatest simplicity."

Adrian Bejan 4
Duke University j
April 16, 1985
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I ON THE BUCKLING PROPERTY OF INVISCID JETS AND
THE ORIGIN CF TURBULENCE

- Adrian Bejan
¥ Department of Mechanical Engineering
University of Colorado, Boulder, Colorado

Ky (Comrmnicated by J.P. Hartnett and W.J. Minkowycz)

APSTRACT . . X . L
This letter outlines the analogy which exists between inviscid jets

S and elastic columns in axial compression. It is shown that straight
’ inviscid jet columns possess the property of sinusoidal infinitesimal
g buckling. The buckling wavelength scales with the transversal dimen-
- sion of the jet. The repeated buckling and breakup of the jet column
" is responsible for the observed whiplash motion of turbulent jets.
The buckling theory predicts correctly the natural frequency of the
whiplash motion and the Reynolds number for the laminar-turbulent
transition in free jet flow.

Introduction

One aspect of jet turbulence receiving increased attention is the large
N scale "orderly" structure with a length scale of the same order as the jet dia-
: . meter. Crow and Champagne [1] showed that as the Reynolds number increases frem
\ 102 to 103, the whiplash motion of jets evolves from a sinusoid to a helix and
‘\ eventually to a train of axisymmetric waves. Similar observations have been re-
ported by Reynolds [2]. The characteristic snake-like shape of a turbulent

round jet is shown very clearly in Fig. 1.

The purpose of this letter is to offer a theoretical explanation for the
observed large-scale periodic structure of turbulent jets. The explanation is
founded on a very interesting analogy which exists between jet flows and slender
elastic columns in axial compression [4]. It may be recalled that Euler's

theory of infinitesimal buckling (indifferent equilibrium) in axially compressed

.

A ARSI
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)

columns rests on only two premises [5.6]:
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FIG. 1
The characteristic meandering path of a turbulent jet (after Yih [3]).

~ - ambienc control surface
v 'P----------- - @ - s e @ .y
G 1 .
LN Jec \ ]
AN 1 )
J ) '
*AYa Y f :
™
e [ \ '
ity ; R —
h :
.
‘e control volune
e
T
'-'.J
P

-
-

—_— S C: _4_99:3;_’(

FIG. 2
The static equilibrium of the envelope surrounding a straight jet.
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(i) the slender column is straight and in axial compression;

1Y

3 (i1) 1if subijected to a separate bending test, the column develops in its
y cross-section a resistive bending moment which is proportional to

the induced curvature.

Slender elastic columns, of course, meet these two conditions. However, it is
shown in the next section that exactly the same conditions are met by inviscid
streams discharging freely into larger reservoirs. Consequently, the column
(control volume) occupied by an inviscid stream buckles sinuscidally, and the
stream mixes periodically with the stagnant ambient. From this result, we con-
clude that the natural property of inviscid streams is to follow a sinuscidal
(meandering) path as they travel through a stagnant ambient. This natural

property of inviscid flow is the basis for the unexplained turbulent behavior
of fluids.

The Static Equilibrium of the Jet Envelope

Consider a straight inviscid jet of density p, uniform velocity V and
cross-sectional area A, as shown in Fig. 2. The static pressure inside the
jet and in the ambient fluid is Po . Imagine now a stationary envelope
(control surface) which surrounds a certain length of the jet. This envelope

and two transversal end-cuts define a stationary control volume.

In the spirit of the thermodynamics of open flow systems (7], the only
forces which act on this control volume are the inlet and outlet compressive

forces
C=pav? (1)

. Forces C are shown schematically in the lower half of Fig. 2 where the control
volume is symbolized by the solid line. At this point we conclude that the
fluid-filled column represented by the control volume satisfies condition (i)

for buckling.

When the control volume is slightly curved, each face of the transversal

cut is exposed not only to a compressive force but also to a bending moment.

Consider the separate bending test in which the jer is held (forced to flow) in
a slightly curved duct. The radius of curvature of the duct, R, . is infinite-
ly greater than the transversal dimension of the jet, D. Bernoulli's equation

for a streamline [8] dictates

1,2 _1 .2
.. 30V +Po—zov(z)+p(z) (2)
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where the right-hand-side of the equation corresponds to the curved duct.
Coordinate 2z 1is measured radially from the jet centerline tcwards the center

of curvature. Radial equilibrium of the jet fluid in the curved duct requires
also [9]

_ vl _ 3

R =3 (3)
o«

(V%)

In the limit of vanishingly small curvature, D/R_ = O, equations (2) and (3)

yield
4
viz) = V(1 + §—) (4)
o
2
p(z) = p_- 22 (5)
° (-]
The bending moment acting over the cross-section is
2
M=”(pvz+p)zmx="::—I (6)

-
A
2 . . . . .
where I = IJ z"dA is the area moment of inertia of the jet cross-section.
A

In conclusion, the cross-sectional bending moment M of a nearly straight
jet column is proportional to the curvature of the column, 1/R_. This means
that the inviscid jet column satisfies condition (ii) for the infinitesimal

buckling of a straight column.

Consider now the static equilibrium of the straight jet enveliope shown in
Fig. 2. <Clearly, the axial compressive forces C balance each other. 1In
addition, the excentricity bending moment CY -- however small -- must ke

balanced at all times by the cross-sectional bending moment [10}

Cy + Mo - M(x) =0 (7

Noting that 1/R, = -dzv/dxz , the rotational equilibrium condition (7) consti-
tutes a differential equation for the equilibrium centerline Y(x) .,

2
DV21 §—§-+ szAY + Mo =0 (8)
ax

The solution satisfying the nozzle conditions Y =Y' =0 at x =0 |is

y(x) = K[cos(xvA/T) - 1] (9}
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oy where the amplitude K is indeterminate and infinitely small compared with the
~ transversal length scale vI/A or D.

W
{ We arrive at the important conclusion that the equilibrium centerline cf
<

the jet envelope is a sinusoid of infinitely small amplitude. The wavelength

of this trajectory scales only with the transversal dimension of the jet,
A= 2nV1I/A (10)

For example, A\/D = 7/2 for a round jet of diameter D, and A/D = n/¥3 for
a flat (two-dimensional) jet of thickness D. An analysis of the meandering
contour of the round jet of Fig. 1 yields A/D = 1.2 which is in good agreement
with the theoretical value of 1.57 (it is very likely that the 24% discrepancy
between the two values is caused by the fact that the contour shown in Fig. 1

overestimates the real diameter of the turbulent jet).

Formation of Large-Scale Vortices

The analogy between the infinitesimal buckling of elastic columns and in-
viscid jet envelopes terminates with the equilibrium centerline given by equa-
tion (9). WwWhereas in slender elastic columns the equilibrium of the small-
amplitude sinuscid is indifferent [10], in an inviscid jet the equilibrium is
unstable. The unstable equilibrium of the inviscid column is described very
well by the classical theory of hydrodynamic instability [11]. The slightest

deviation of the jet from its rectilinear shape leads to the formation of

lateral "1lift" forces which consistently tend to amplify the deformation. As a
result, the inviscid jet breaks up periodically as its overextended elbows
penetrate and mix with the stagnant ambient. The degenerated elbow region
becomes a "large scale turbulent structure"” [1] which continues to move down-

stream with a speed of order V/2.

‘ The repeated buckling and breakup phenomenon accounts for the observed
whiplash and fluctuating motion of turbulent jets. The period of this fluctua-

tion scales with the buckling time tB = A/V, i.e., with the time of fluid

quency of jet fluctuation can be expressed in dimensionless form as a Strouhal
number

! travel between successive elbows (breaks) in the jet column. The natural fre-
|

D
st = v = (11)

B 0

o

which, as shown in the preceeding section, has a value of order 0.5. This order
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of magnitude estimate agrees very well with experimental measurements of the
natural {requency of turbulent jets exposed to a range of external excitation
frequencies. For example, Bechert and Pfizenmaier [12] reported st = 0.5 for
maximum amplification of broadband jet noise. Most recently, Acton [13] con-
ducted a computational simulation of a round turbulent jet by mecdeling the shear
layer as a succession of discrete vortex ring elements. Acton showed that the
natural periodicity of the round jet was St £ 0.47, and that the jet was most

sensitive when forced at approximately the same frequency (St = 0.5).

The Transition to Turbulence

The buckling property and fluctuating nature of inviscid jets provide a
theoretical basis for predicting the transition to turbulence. The transition
from laminar jet flow to turbulent flow occurs when the stationary ambient is
no longer capable of viscously communicating with the jet. The viscous commu-
nication time between the jet-ambient interface and the jet centerline follows

from Stokes' first problem [14]
t = — (12)

The jet is free to buckle, i.e., to get out of hand, if the viscous diffusion
time tv is longer than the buckling and breakup time tB. Defining the
buckling number N as the ratio of these two characteristic times of the flow

B
configuration,

ty
N8=t_>l ' (13)
B

we have a criterion which predicts the fluctuating (turbulent) behavior of the
jet. Using equation (12) and tB = A/V, the buckling number can be written

also as

N = Y2 DA

B v 16 (14)

For a round jet, the transition criterion NB > 1 becomes

25 (15)
v
It should be noted that this order-of-magnitude estimate of the transition

Reynolds number agrees very well with experimental observations. For example,

viilu [15] found the value of 11.2 for the Reynolds number of breakdown of the

3
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steady laminar jet. Viilu's observations were later confirmed by Reynolds [2]

who reported the range 10 < Re < 30 for the transition Reynolds number.

The buckling number criterion of transition to turbulence, equation (13),
explains also why the observed transition Re is a number considerably greater
than unity. For a dimensionless group to truly delineate the transition from
one mechanism to another, it must have a value of order one which, after all,
reflects the balance between the ccmpeting mechanisms. The Reynolds number is

! not the correct dimensionless group to describe transition to turbulence. The
, Reynolds number is the experimental (measurable) reflection of the NB transi-

tion criterion.

Concluding Remarks

i This letter unveiled a theoretical basis for predicting the large scale
structure and fluctuating behavior of inviscid jets. The analogy between jet
envelopes and elastic columns in axial compression showed that the natural
tendency of inviscid jets is to buckle over a precise wavelength which scales
only with the jet diameter. The repeated buckling and breakup of the jet column
is responsible for the sinusoidal, river-~like, path of turbulent jets and also

l for their natural whiplash motion. The predicted natural frequency of the jet
agrees very well with measurem:nts from harmonic excitation experiments.
Finally, we learned that the transition from laminar to turbulent jet flow
occurs when the buckling and breakup time is shorter than the time of viscous
diffusion across the jet. This last conclusion is supported strongly by experi-

mental observations.

The buckling property described in this letter emerges as the fundamental

property serving as origin for turbulent motion in inviscid flows.

ﬁ.- Acknowledgement. This research is being supported by the Office of Naval

s Research.
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Suleiman and Munson! recently presented a sequence
of interesting experiments concerning the buckling of
thin viscous fluid layers. In their paper the authors
referred to Taylor's observations on the buckling of
slender viscous filaments.? His early observations and
the Suleiman and Munson experiments point toward an
important analogy between the buckling of elastic col-
umns and the buckling of viscous filaments in longitudi-
nal compression.

The object of this Comment is two-fold. First, it
brings to the readers’ attention the fact that a buckling
theory of thin viscous layers already exists. Second,
it points out that the buckling of slender columns in ax-
ial compression is not a property only of elastic solids
and highly viscous fluids, but also a property of intis-
cid columns (streams).

The buckling of a thin viscous layer was considered
theoretically by Buckmaster, Nachman, and Ting.?
They showed that viscous layers in longitudinal com-
pression satisfy two basic requirements: (i) the vis-
cous layer is in axial compression and the compressive
force is proportional to the relative velocity between
the two ends of the layer; (ii) if curved, the viscous
layer develops in its cross section a bending moment
which is proportional to the time-rate of change in the
local curvature. The momentum equations integrated
over the viscous layer led Buckmaster, e! al.®toa
global equation for the evolution of the layer centerline.
This equation was solved by assuming various initial
disturbances as the starting shape in the evolution of
the viscous layer. In a subsequent paper, Buckmaster
and Nachman® have extended this theory to the case
where surface tension effects play an important role.

1764 Phys. Fluids. 24(9), September 1981

Comments on “Viscous buckling of thin fluid layers”
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Of fundamental interest are the similarities between
the buckling of a viscous layer (the viscida problem)
and the buckling of a slender elastic column (the elas-
tica problem). A close examination of the Euler theory
for slender elastic columns reveals that, for infinitesi-
mal buckling, elastic columns must satisfy only two
conditions (Ref. 5, p. 184): (iii) the column is straight
and in axial compression; (iv) if subjected to a separate
bending test, the column develops a resistive bending
moment in its cross section which is proportional to
the local curvature. The infinitesimal buckling of the
straight column follows from invoking static equilibrium
for the system sketched in Fig. 1. For a straight or
nearly straight column there are two equilibrium condi-
tions to consider. The first is the obvious balance of
compressive forces C in the longitudinal direction.

The second is one of rotational equilibrium which states
that the eccentricity bending moment Cy, however
small, must be balanced at all times by the cross-sec-
tional bending moment /. In the case of a column con-
taining elastic material, a special bending test of pre-
scribed curvature (Ref. 5, p. 37) combined with knowl-
edge of the elastic properties of individual fibers in

the slender column leads to the notion of a cross-sec-
tion bending moment proportional to the local curvature
(iv), Combining this notion with the rotational equilib-
rium condition yields the equilibrium shape of the straight
column, namely, a sinusoid of infinitely smallamplitude.
The infinitesimalamplitude is indeterminate, hence, the
equilibrium of the nearly straight elastic column is indiffer-
ent. If present, the slightest lateralforce is ableto pushthe
columnaway from the straight equilibrium shape intoa
nearly straight (sinusoidal) equilibrium shape (Ref. 3,
p. 184).

© 1981 American Institute of Physics 1764
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FIG. 1. (a) Translational and rotational equilibrium of a

slender column ( control volume) in axial compression. (b)
The natural buckling wavelength of circular and two~dimen-
sional inviscid jets.

In this discussion it is important to include the case
of inviscid fluid columns: Do such columns conform to
buckling of type (i, ii} or to buckling of type (iii, iv)?
Thermodynamic reasoning alone suggests that inviscid
columns should buckle according to model (iii, iv) be-
cause, like elastic solids and unlike highly viscous flu-
ids, inviscid fluids are free of entropy generation.

Referring again to Fig. 1, we note that a column con-
taining inviscid fluid is none other than the imaginary
control surface drawn around an inviscid jet flowing
through an inviscid fluid at rest. Since the column is
stationary, its equilibrium is described by the two
static conditions (force and moment) discussed in con-
nection with the Euler buckling of elastic columns.
The remaining problem is to determine what special
forms C and V/ take in the case of inviscid stream col-
umns. For the compressive force on the control vol-
ume, C, we know from the thermodynamics of open
flow systems that’

C=pAV?, (1)

where p, A, V are the density, cross-sectional area,
and velocity of the stream. In order to determine the
cross-sectional bending moment M, we conduct a spe-
cial bending experiment where the inviscid stream is
held in a duct of known radius of curvature, R_.. In the
limit of vanishingly small curvature, the inviscid flow
equations show that the resistive bending moment in the
cross section is?

M=pVYU/R_, (2)

where / is the area moment of inertia of the cross sec-
tion (Ref. 5, p. 37). Equations (1) and (2) show that
inviscid fluid columns obey conditions (iii, iv) for in-

1765

Phys. Fluids, Vol. 24, No 3, September 1981

finitesimal buckling. The corresponding equilibrium
shape of the column is a sinusoid of infinitely small
amplitude,® whose wavelength is

r=2n(1/A) 3. (3)

Inviscid streams, like elastic rods and viscous lay-
ers, possess the natural property of buckling. The
wavelength of the buckled shape scales only with the
transverse dimension of stream; for example, Eq. (3)
for a jet of round cross section, yields A/D=7r,2. Un-
like buckled elastic columns, whose equilibrium is in-
different (Ref. 5, p. 184), buckled inviscid columns
are unstable. The post-buckling evolution of the invis-
cid column is well understood, forming the subject of
the classical theory of hydrodynamic stability.® How-
ever, the buckling property is to be recognized as re-
sponsible for the wave-like “disturbance’” assumed
routinely (empirically) as a starting point in any hydro-
dynamic stability analysis.

In essence, the buckling property of inviscid streams
guarantees that such streams cannot flow straight
through another fluid or through a flexible duct. This
new property of inviscid fluids stands at the very root
of the phenomenon of furbulence. For example, the in-
teraction between the elbows of the buckled stream and
the stagnant medium leads to the periodic formation of
large eddies. These large-scale turbulent structures
are responsible for the river-like shape of turbulent
jets, wakes, and plumes; It is widely observed that the
wavelength of this large-scale meandering path scales
with the diameter of the stream, as predicted in Eq.
(3). The natural buckling of inviscid streams is par-
ticularly visible in the case of streams flowing within
flexible boundaries, like rivers and capillary rivulets
at high Reynolds numbers, The buckling property
serves as the theoretical basis for predicting other
turbulence parameters, for example, the natural fre-
quency of turbulent jets (the Strouhal number) and the
critical Reynolds number for transition to turbulence. ®
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The meandering fall of paper ribbons

Adrian Bejan

Department of Mechanical Engineering, University of Colorado. Boulder. Colorado 80309

iReceived 14 August 1981; accepted 22 February 1982}

This paper discusses expenmental observations of the meandenng fall of light-wetght tissue paper ribbons.
The photographs show that the ribbons assume a sinusoidal shape with a umique wavelength which scales

with the thickness of the airstreamn entrained by the ribbon.

The objective of this paper is to present a series of
\nteresting experimental observations concerning the
meandering motion executed by highly flexible ribbons
failing through the air. The experiment consisted of
dropping a length of light-weight toilet tissue paper
through the air and photographing its shape as it falls
to the ground. The reader may take note of the fact that
this falling-ribbon phenomenon occurs naturally when
excited sports fans launch rolls of tissue paper from the
stands onto the playing field. Another natural phenome-
non related to the falling-ribbon experiments described
in this paper is the “waving of flags”! and the “vibra-
tion” of tape drives used in the computer technology.?
The classical prespective in the study of flag waving
falls in the realm of hydrodynamic stability theory,
where one questions the stability of the flexible solid
surface. The starting point in the stability study is the
assumption of an initial deformation of arbitrary wave-
length.

In the present experiments, ribbons of various lengths
were dropped from heights in the range 3=7 m, through
the quiescent air of the laboratory. The time of free
fall was measured with a digital stopwatch; it was found
that the ribbon reached its terminal velocity very quick-
lv, therefore, the free-fall velocity U could be deter-
mined by dividing the total travel by the measured time
of free-fall. In order to force the ribbon to fall “head
first,” one end was loaded with a lead refill for a mech-
anical pencil.

This simple experiment was repeated many times and,
in all cases, the photographs showed that the falling
ribbon acquires a sinuous shape: the wavelength of this
shape was the same for all the cases involving a ribbon
of fixed length. Figures 1(a) and 1(b) show very clearly
the characteristic sinuous shape observed in these ex-
periments. A longer ribbon [Fig. 1(b)] exhibits a rela-
tively longer wavelength.

Another important observation is the fact that the sin-
uous shape travels as a solid body downward, at a speed
of order U,'2, where U is the speed of the tissue paper
itself. The wave speed was measured photographically,
as shown in Fig. 2. This photograph was obtained with
the shutter open in complete darkness, while lighting
the falling ribbon with a strobe light three times, at
precise time intervals (/ =0.025 sec). The fact that the
sinuous shape travels at half-speed is strong evidence
that the sinuous shape is produced not by the tissue pa-
per, but by the airstream whose centerline moves at
top speed U through an ambient at rest.

741 Phys. Fluids 25(5), May 1982
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The key measurement facilitated by the fall:ng-ribbon
experiment is that of the meander wavelength. Measur-
ing the distance between the elbows of the sinuous shape
of Figs. 1(a) and 1(b), and averaging these measure-
ments over the sinuous portions of each ribbon, yields
the wavelengths listed under 24 in Table I. The rela-
tively small standard deviations of these measurements
indicate that the elbow-to-elbow distance does not vary
appreciably along the wavy portion of the ribbon.

The effective thickness D, of the air stream entrained
by the ribbon can be calculated based on the following
energy-conservation argument. During its steady fall at
terminal velocity U, the ribbon weight W performs the
mechanical work WAL on its ambient; AL is the linear
increment in downward travel, equal to Uat, where At

o R wa : b ¥ ,“#‘1.

F1G. 1. @) Fallof a 1.25 m ribhon of tissue paper. b Fail

of a 1,83 m rihbon of tissue paper,
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TABLE I. Laboratory measurements of the meanderiag wavelength of the inviscid air stream
driven by a falling ribbon.
: Ribbon dimensions Terminal Meander Effective
lengthx width Total weight speed wavelength air-stream =
" Experiment Lxb icm?) wig) Ulm/s) Ap (cm) thickness .
! D,(cm)
Fig. 1(a) 125x 11,4 3.21 2.93 £0.15 15.5 +£1.3 5.5 £0.56 ]
-
ol Fig. 1) 183x11.4 4,97 3.04 £ 0,09 2% £ 1.5 7.86+0.46 o
IS ke
.“‘
1 R
K )
is the time increment. The work done by the weight is thickness (D) and “‘buckling” wa\'elenghi\p). For a .
& first converted into the kinetic energy imparted to the two-dimensional stream one finds D =(v 3/ 7)\g, which A
: airpacket pierced by the tip of the ribbon during the agrees in an order of magnitude sense with the meus- ::3-
e time Atf (at the same time, the ribbon-air train sheds a urements listed in Table I. Additional evidence sup- X
- moving air packet of the same size: the kinetic energy porting this explanation is the fact that, from Fig. t{a) o
X of this air packet is eventually dissipated in the wake). to 1(b), both Mg and D, increase. .,;;
. Equating the two energy increments, we write -
; ACKNOWLEDGMENT
: WAL =(pD,ALB)(U%2) or D,=2(W pU?%), (1
. . . . This research work was supported by the Office o1
. where b is the ribbon width and p is the air density. Naval Research P
‘ . .
, The results of this calcu .tion are listed in Table I
o Clearly, the meander wavelenuth scales with the air
- stream thickness.
. ) Y, Lainh, Hy ivodvynamies iDover, New York, 19430, p. 374,
A possible explanation for the above observations 5. K. Datta and W, G. Gottenberz, J. Appl. Mech, 87, 167
may be offered based on the bucklinyg theory of 1nviscid 0T,
O streams.™* One key result vl this theory 1s the univer- "A. Bejan, Lett, Heat Mass Transfer 8, 1~7 10~1,
: sal proportionality which must extst between streatm YA, Bejan, Phys. Fluwds 24, 17684 slosiy,
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THEORETICAL EXPLANATION FOR THE INCIPLENT FORMATION OF MEANDERS [N STRAICHT RIVERS
Adrian Bejan

Department of Mechanical Engineering, Campus Box 427, University of Colorado

Joulder, Colorado $§J3309 {Sa

Abstract. This paper advances a theoretical
explanation for the lateral periodicity and geo-
metric similarity of meanders observed in rivers of
many sizes. Invokineg the static equilibrium of a
straight river bed, it is shown analytically that
the equilibrium shape of the bed is a unique
sinusoid. The theoretical wavelength of the
sinusoidal shape is proportional to the width of
the river, in agreement with visual observations
of rivers of all sizes.

1. The Geometric Similarity of River Meanders

The most basic feature of the meander phenomen-
on is the proportionality between meander wave-
length A and stream width W (Leopold and
Wolman 1960). As concluded in a recent review
article (Callander 1978), significant theoretical
progress has been made in the direction of ex-
plaining the occurrence of meanders and accounting
for measured meander parameters. The theories
developed over the past thirty vears have in
common the thinking framework offered by the
Theory of Hydrodynamic Stability: according to
this approach, one analyzes the stability or in-
stability of sinusoidal waves (disturbances)
superimposed on the straight river flow. As
summarized by Parker (1976), consideration of
gravity waves led Werner (1951) to the conclusion
that )\/W~2F, where F is the flow Froude number.
Hansen (1967) posed the linearized stability
problem associated with a meandering (sinusoidal)
disturbance and found )/H = 7 F2/S, where H is
the river depth and S 1s the dip angle of the
river bed. Anderson (1967) analyzed transverse
oscillations and obtained
\/W = constant x (F H/W)*. A number of improved
models of hydrodynamic stability have been re-
ported more recently: for example, Callander
(1969), Sukegawa (1970), Hayashi (1974), Enge-
lund and Skovgaard (1973) and Parker (1976).

The chief contribution of the theoretical
research reviewed above and, in greater detail,
in Callander (1978), is to have shown that the
bed of a channel with straight banks is unstable:
since the bed is composed of moving sediment,
the amplitude of a certain class of disturbances
is likely to grow the fastest. In addition,
this research predicted correctly the direction
of migration and the downstream wave speed of
meanders. These conclusions are important and
will be adopted without debate in the theory
developed in this paper. However, the chief
l1imitation of the existing theories is also
important: note should be made of the fact that
the ratio ‘/W predicted by hvdrodynamic
stability considerations (Table 1) does not have

Copyright 1982 by the American Ceophysical Union.

Paper number 2L1032.

a characteristic (unique) range of values,
contrary to the statistical evidence compiled
over natural streams of widely varving sizes
(Leopold and Wolman 1960). This limitation is
accepted from the start by every stability
analyst who postulates the existence of distur-
bances of every wavelenath and then tries to
identify which of these disturbances will
develop the most rapidly.

Inasnuch as the constancy of the ratio /W
appears to be an intrinsic property of all
streams, the stability theories explain the eveolu-
tion (behavior) of existing meanders but not their
origin.

The theory coanstructed in this paper addresses
the question which has not yet been addressed,
namely, why does a straight (undisturbed) river
choose a sinuous shape of precise wavelength? Ce-
fcre presenting the theoretical answer to this
fundamental question, the author finds it neces~
sary to review a class of very useful experiments
which shed light on the natural properties of the
(river)-(flexible bed) system.

. 2. The Stream Plate Experiments

The original stream plate experiment was
proposed by Tanner (1960) as a means of visual-
izing the natural tendency of streams to meander.
The same technique «'s used in a comprehensive
study by Gorycki (1973a). The experiment consists
of a smooth plane surface which supports a water
jet flow issuing from a nozzle tangent to the
surface, Thus, the stream plate experiment is the
laboratory version of water tricklings commonly
observed on shower walls and car windshields. The
water columns generated in this fashion meander in
much the same way as rivers do. However, there is
one important advantage to this experiment, name-
ly, the opportunity to observe the incipient phase
of the meandering process in a straight jet.

0f interest here are Tanmer's and Gorycki's
observations, and the clever mechanical analog
visualized by Gorycki to simulate river meander-
ing. First, the stream plate visualization of the
meander formation process is strong evidence that
the meander is a property of the stream; this
property is independent of the effects of sedi-
ment. In comparing various stream plate experi-
ments, Corycki (1973b) argues further that plate
roughness is not necessary for meander formation.

The experiments also showed (Tanner 1962) that
meandering is independent of the secondary flow
or disturbances which may be present in the
nozzle. This conclusion is strengthened by the
statement made by Schumm and Khan (1972) who ob-
served meanders made in the laboratory under
straight entrance conditions: '...a perturbation
or disturbance of the flow may not be an essen-
tial cause of meandering" (Gorycki 1973a, p. 178).

Coryckil presented also a mechanical analog of

0094-3276/82/002L-103283.00 the river meandering mechanism: he held a slender
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\: TABLE i. Comparison of the Present Theury with Meander Wavelength Observations :
niY 1
I T '
Xy ; Reference ; MW : Remarks i
\ - : ‘ i
AR . present the.ry f 2,22 © incipient buckling J
N . , " (absolutely straizht stream) V
b 3 ) P
i: 5 . Gorycki (1973a) ; 2-3 stream plate sinulations :
i :, K é | . | i
° - i Leopold, Wolman and , | g
L . Miller (1964), ) 2-3 , field studies in straipht
B zs ' Leopold and Wolman (1970), ;. rivers
:;" -z Durv (1964) | l
' 4ol .
o E 3 Schumm and Khan {1972) . 3.24 £ 0.64 : laboratory channel ﬁ
Vi} <3 ‘ Table 3 ; i during development
. by o i
= . & : Keller (1672) 3-5 channel experiments
% 3 l during development
o -
" : 5-7 during late stages of
. | development
a + I Leopold and Wolman (1960) 6.5 - 11 natural (long history)
- ! Table 1
it 1
8
Y
- piece of elastic (a slender cylindrical column of 3. The Static Equilibrium of a Straight River
:2 rubber) between two parallel pieces of glass. He
s then moved the glass pieces relative to one an- Consider a straight, inviscid, river flow of
f« other, in the direction parallel to the cylinder uniform velocity V, density ¢, width W and
axis. As a result, the piece of elastic assumed depth H. The bed of the river is horizontal.
- a shape which resembles very closely that of a In the stationary frame of reference of the bed,
- meandering stream in a stream plate experiment. the river cross-section exhibits a uniforam com-
- It is shown in the next section that ‘the pressive stress QVOZ + Po(z)' where P is
A mechanism responsible for elastic meandering is the excess pressure
N also responsible for river meandering. 1In Mechan-
g:{ ical Engineering, which is the present author's P (z) = pg (H - 2) (1)
& education, the sinusoidal shape of the elastic o
) column has been explained as the buckling property and g 1is the gravitational acceleration. The
of slender spaces in longitudinal compression. resultant of this compressive stress, integrated
S The buckling of slender columns represents an over the river cross-section, is
. important and voluminous chapter in the centuries-
* old discipline of Strength of Materials (Den C= Voo WH (1 + _557 . )
i Hartog, 1961). The theoretical basis for this 2Vt
g chapter was established by Euler, who pointed out Therefore, in the frame of reference of the bed,
°J that in order for a slender space to buckle into the straight river is a slender columm in longi-
an equilibrium sinusoidal shape it must satisfy tudinal compression. This means that condition
-, only two conditions (Love 1927): (i) is satisfied. In order to see that the bed,
o (i) the slender space must be in a state of as a duct, is in a state of longitudinal compres-
b~ axial (longitudinal) compression. sion, the reader should think of a piece of garden
- (i1) the material which fills the space must hose through which the flowrate is high (turbu-
) be such that if the space is subjected lent). The hose is pushed axially by the reactive
o to a separate bending test of prescribed compressive force associated with the stream
¥l curvature, then the space develops in its leaving through the open end. The same hose is
cross-section a resistive bending moment pushed axially in the opposite direction by the
L% (couple) which is proportional to the impactive force associated with the stream enter-
- local curvature. ing it from the faucet.
f?: The piece of elastic described by Gorycki As shown in Fig. 1, the static equilibrium of
r{l satisfies the above conditiens. But it is impor- the bed requires two statements, one for transla-
ruﬁ tant to keep in mind that conditions (i) and (ii) tional equilibrium (obvious, C = C) and the other
r*i do not rvefer to a specific material such as an for rotational equilibrium. The rotational equil-
h elastic solid: they refer to a space (column) of ibrium condition is made necessary by the fact
finite size. The objective of the following that no straight river is ever "mathematically"
analysis is to prove that the river and its bed, straight; in other words, all straight rivers are
as a slender space, also satisfy conditions (1) subjected to an infinitesimally small couple CY
and (ii) necessary for sinusoidal buckling. due to the imperfect colinearity of the axial
I g B O TN S A I TR . D
e e e T g D T i e b e s T i e s e e s




forces C. The rotational equilibrium condition
is (Den Hartog 1961)

CY -M+M, =0 (3)

where M is the coupie acting over the river
cross-section.

\; It is easv to show that the river column also

NG satisfies condition (ii), or that a net couple M

;{ is present whenever the column Y (X) is locally

&; curved. Consider a separate bending test in

M, which the river radius of curvature R 1is infin-
itely greater than the river width W (Fig. 2).
The new velocity V and pressure distribution P

O in the cross-section carn be determined immediate-

ﬁ\ ly from Bernoulli's equation (Prandtl 1969)

L

R

. Tovi+ B =3 4R )

combined with a local force balance in the radial
direction y (Prandtl 1969),

ov? _ Ap
—_— 5
Ry ay )
In the limit of vanishingly small curvature,
W/R_~+ 0, we obtain
Vv, (1-%) (6)
X
P = oV,2 % + pg(H -2). 7

A related result is that the free surface z;(y)
acquires a slight tilc

Voly
zg(y) = H + R (®)

@

Due to the slight tilt, the center of mass of the
cross~section shifts from y =0 to
vy = Vy°W?¥/(12gHR,), where y.<< W,

According to the standard methkods of mechanical
engineering, the net bending moment M about the
vertical line passing through the center of mass
of the cross-section is

y=W/2 2=z (y) V42 HW?
M= (pV34P) (y-yo) dzdy = - —gz—
ye-W/2 2z=0 *
(9)

This result demonstrates that the river cross-
section experiences a bending moment as soon as
the river trajectory has curvature. Equation (9)

Fig. 1. Static equilibrium of a straight river
bed (view from above).
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Cross-section through the river.

proves that rivers also obeyv condition (ii) tfor
sinusoidal buckling.

4. The Natural Sinusoidal Shape of Rivers

In the limit of infinitesimally smail
deviations from the rectilinear shape, the river
curvature 1/R, 1is equal to -d4?Y/dX?. Based on
this approximation and equation (9), the static
equilibrium condition (3) becomes

cy + oVe? HW3Y™ + My = 0

8 (10}

The general equilibirum shape of the river bed
follows from equation (10),

M

Mo
T = {cos(Z'.'%) -1, au)

wvhere the wavelength ) has a precise value given
by

P

- 1
[2 + gH/V, 2%

={.~

(12)

For shallow rivers and for stream plate simula-
tions (gH/Vy? << 1) we find

% = = 2.22, universal constant (13)

;J] |:l

In conclusion, the natural (equilibrium) shape
of the river bed is a sinusoid whose wavelength
is a precise multiple of the river width. The
amplitude of this shape is unknown (infinitely
small), because the analysis leading to equation
(12) invoked the static equilibrium of a straight
river. It is well known, however, that the
equilibrium of a nearly straight river bed is
unstable (cf. Hydrodynamic Stability Theory,
Section 1) and that the highly regular, sinuous,
shape determined here is destined to grow in
amplitude.

5. Conclusion

The fundamental contribution of this
theoretical argument is the prediction of a
universal proportionality between meander wave-
length and river width, equations (12, 13). This
prediction is supported strengly by observations
of meander formation in straight rivers and in
stream plate experiments. Attention is drawn
first to the stream plate experiments (Gorycki
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:973a, p. 179, Figs. 3, 8, 9, 10, 13) which
concliusively show ''that the spacing between the
sinuous curves or point bars in straight streams
is approximately two to three times the streanm
width”, as in equation (13). Similar values of
/W in straight rivers were reported by numerous
field studies; for example, in Leopold, Woiman and
Miller (1964), Leupold and Wolman (1970, Fis. 7.8)
and Dury (1964, Fizs. 26, 28). A ratio /W be-
tween 2 and 3 appears to be a universal feature of
all straight streams. Keller (1972, p. 1534)
showed that only in the late stages of meander
development /W reaches values in the range of
5-7, whereas during development the ratio /W is
in the range 3-5.

Table . shows a summary of experimental obser-
vations next to the constant ratio /W predicted
by the present theoryv of river buckling. The
present theory agrees with observations made in
straight or nearly straight rivers, which conform
to the type of system selected here for analysis
in Section 2. Table 1 shows also that, as time
passes, the ratio /W increases from the initial
theoretical value (2.22) to the natural (long-
history) value of approximately 10. Thus, the
present theory offers a concise explanation for
the origin of meanders in straight rivers.
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The nonaxisymmetric (buckling) flow regime of fast capillary jets

Michael G. Stockman and Adrian Bejan
Depar:ment of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

{Received 16 December 1981; accepted 5 May 1982)

This paper reports an experimental study of the nonaxisymmetric flow of a fast liquid jet
discharging into the atmosphere. The nonaxisymmetric shape of the jet was photographed and
s subjected to a wavelength analysis. The results of the wavelength analysis demonstrate that the jet
shape is governed by a narrow band of wavelengths associated with a characteristic value 4,
- which scales with the jet diameter D. It is shown that the experimental observations are in

) agreement with predictions based on hydrodynamic stability theory and buckling theory.
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1. INTRODUCTION

The problem of capillary jet flow and breakup has a
long history beginning with the qualitative studies of Bi-
done’ and Savart,? which were extended by Savart, Plateau,
and Rayleigh, and summarized later by Rayleigh.® These
studies focused on the low-speed regime where the jet forms
radially symmetric, regularly shaped, drops of measurable
frequency. Rayleigh studied the symmetric (varicose) break-
up theoretically, by imposing hypothetical infinitesimal dis-
trubances on the jet and examining the stability {or instabil-
ity) of each disturbance in time. Rayleigh's theory was sum-
marized and extended in several directions by
Chandrasekhar.’

Much of the post-Rayleigh work focused almost exclu-
sively on the axisymmetric (varicose) regime, although there
have been a number of instances in which a nonaxisymme-
tric breakup mode was observed. Crane, Birch, and McCor-
mick® employed an electronically driven vibrator to study
the dispersion curve of low-speed jets (the dispersion curve is
the graphical representation of the response of the capillary
jet to a continuous set of imposed disturbance frequencies).
Their results agreed only qualitatively with Rayleigh's. A
similar experiment was described by Donnelly and Glaber-
son,® who studied the response of a capillary jet to external
disturbances generated by a loudspeaker and audio oscilla-
tor. Donnelly and Glaberson, like Crane et al., noted parcels
of liquid between the large drops predicted by Rayleigh's
theory. They termed these parcels *“ligaments’ and account-
ed for their appearance by arguing that the ligaments were
due to higher-order harmonics present in the disturbing fre-
quency. Donnelly and Glaberson found excellent agreement
between Rayleigh’s linearized theory and their experimental
results, despite the fact that Rayleigh's theory does not pre-
dict the existence of ligaments.

During the past fifteen years we have witnessed a large
volume of research aimed at explaining and predicting the
formation of ligaments in the process of varicose break-up;
examples of this research effort are the theoretical work of
Yuen,” Nayfeh,® and Lafrance.” Experimentally, the liga-
ment and satellite drop formation mechanism was invest:-
gated by Goedde and Yuen,'® Rutland and Jameson'' and,
in a comprehensive three-paper study, by Chaudhary and
Redekopp,'? and Chaudhary and Maxworthy.'*'*

Relative to the wealth of information on the varicose
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regime, the nonaxisymmetric breakup is practically un-
known. Photographs of the meandering path of fast capillary
jets appeared as early as 1931 in the writings of Weber'® and
Haenlein’®: these photographs were reproduced later in a
famous textbook by Prandtl,'’ who referred to the crests of
nonaxisymmetric shape as “wavy bulges.” The subject of
nonaxisymmetric breakup resurfaced only recently in the
literature, triggered by the need for improved fire-fighting
equipment. Hoyt, Taylor, and Runge'® reported an experi-
mental study of the breakup of fast water jets and on the
effect of adding drag-reducing polymer to the water solu-
tion. The authors refer to the meandering section of the jet as
an “unstable wave region.” Greater photographic resolution
of the meandering breakup regime was achieved in a subse-
quent descriptive study by Hoyt and Taylor.'®

In summary, much of the existing work on the breakup
of capillary jets has dealt with the axisymmetric (varicose)
regime. The work on the nonaxisymmetric regime is sketchy
and, in all cases, qualitative. The object of this paper is to
repoft a quantitative study of the nonaxisymmetric flow re-
gime of fast capillary jets. For the first time, the photo-
graphed shape of such jets is subjected to a rigorous wave-
length analysis which shows conclusively that the
nonaxisymmetric shape is governed by a characteristic,
meander-type, wavelength which scales with the jet diame-
ter.
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FIG 1 Schematic of expenmental apparatus and nozzle design.

0031-9171/82,/091506-06801 90 € 1982 Amancan Institute of Phvers 1508

. Lot - - P N . -

N M - - C ) . * -. . - .. . . et et L, "..'-.‘ - 4. '_‘
T \ . ) ."'-‘A."".".‘..‘ G e T eSS, Ao T T G RN WS
M}d M}w 4. "&!. A T e e e s e e e e e e PP L P TPI,

i

[ICY 1Y % et P

MIRT DN| =

RS | 1] ARSI

PR SRR

-'.f. (‘f rd

1T i

LA P

e T,




e Ak A AR 2t -G ot -2 e Ml maec's 0“2 e~ da e Ate R Un-Ranlie i Al Alae 4 te Afe A0 Sl ana S Aan

ll. EXPERIMENT

The breakup modes of a capillary jet issuing into the
surrounding atmosphere were studied in the laboratory us-
ing the apparatus shown in Fig. 1. The fluid reservoir con-
sisted of a 1.83 m tall Plexiglas cylinder with an internal
diameter of 14 cm. The reservoir had a number of fluid
drainage ports distributed equidistantly over its height. The
nozzle adaptor included a “rounded” internal duct design,
and was located 15 cm from the bottom of the cylinder in
order to avoid the flow distortion caused by the bottom. The
reservoir was safely pressurized to 2 atm (30 psig) while the
cylinder was full, yielding a jet velocity range of 0~25 m/sec.
The range of low jet velocities was produced without pres-
surization by controlling the height of the reservoir column
via an appropriate drainage port. Figure 1 shows also the
two nozzles employed in this study. The 3 mm nozzle was
made from a plastic compound which was cast in a preci-
sion-made mold and later machined to final dimensions. The
1.1 mm nozzle was machined directly from a Plexiglas rod.

The jet flow was recorded photographically using the
set up shown schematically in Fig. 2. The photographic
equipment consisted of a Hasselblad SOCEL/M view camera
fitted with extension tube No. 21 for detailed closeup shots, a
Sunpak model 320 photoflash and a 45 cm X 75 cm section of
translucent glass for diffusing the light from the flash. As
shown in Fig. 2, the jet was positioned between light source
and camera. The proper combinations of f-stop and shutter
speed (in total darkness at “full” flash power), determined
after a number of trials, are reported here in Table I.

To provide a reasonable range of fluid properties, this
study was based on three different fluids;

I. distilled water,

IL. glycerol in water solution, 30% by volume,

IIL. glycerol in water solution, 70% by volume,

The physical properties of the three fluids are reported in
Table I1. For each of the three fluids and the two nozzles,
four different jet velocities ranging from 2 m/sec to 20 m/sec
were observed. Thus, a total of 24 jets were observed and
recorded.
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FIG. 2. Photographic arrangement, and the coordinates of the photo-
graphed jet segment.

1507 Phys. Fluids, Vol. 25, No. 9, September 1982

ATEIRIS AN
L]

SefeTAL A Ay

TABLE 1. Proper exposure settings for photography in total darkness at
“full” flash power.

Film type f-stop Shutter speed
Kodak EPR 120 4 1/30 sec
Kodak PXP 120 5.6 1/30 sec

Ill. THE CHARACTERISTIC WAVELENGTH

The domain covered by the present study is shown on
the Weber number-Reynolds number chart of Fig. 3. The
following definitions apply,

We =pV 2D /o, (h
Re=pVD /u i2)

where p, V, D, a, and u are, respectively, the jet density,
velocity, diameter, surface tension (in contact with air), and
viscosity. As illustrated in Fig. 2, (a) and (b) denote the ex-
tremities of the photographed portion of the jet. The com-
plete photographic record is available in a thesis written by
Stockman.?® Due to space limitations, in the present paper
we analyze only a representative sample of this record.

Three photographs of the fast capillary jet flow are
shown in Figs. 4(a), 5(a), and 6(a). Each photograph corre-
sponds to one of the three different liquids used in this study.
It is useful to take a close look at the shape (contour} of the
photographed jets in order to recognize the large-scale
meandering path followed by the jet. As the jet fluid viscosity
increases from Figs. 4(a) to Fig. 6(a), the sharpness of the
meandering path is enhanced to the point where, in Fig. 6(a),
the sinusoidal contour of the jet is illustrated with amazing
clarity.

The central objective of our study was to document in
quantitative terms the meandering shape of fast capillary
jets. To meet this objective, the jet contours were subjected to
a wavelength analysis. In each case, the jet contour was pro-
jected (enlarged) on a screen and traced by hand on paper.
This operation produced two waveforms, one for the upper
edge of the jet column and another for the lower edge. The
waveforms were then digitized and fed into a computer pro-
gram which calculated their Fourier transforms and deter-
mined the respective power spectra and cross correlation
functions.

Inorder tolearn how the characteristic wavelength var-

TABLE II. Physical properties of the working fluids.

Surface
Density Viscosity tension
Fluid g/cm') (eS| (g/s%)
L Distilled water
{18°C) 1 1 bk}
I Glycerol-water,
30% by volume (20 "C) 1.18 17 68
m Glycerol-water,
70% by volume (20 °C) 1.24 333.6 64.5
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FIG. 3. Weber number-Reynolds number domain covered by the present experiments.

ies with position along the jet, each photographed contour
was divided into a number of segments [for example, three
segments for the jet column shown in Fig. 4(a)]. Each seg-
ment was analyzed, and the results are presented in Figs. 4-6
as power spectra with A /D on the abscissa and P* on the
ordinate. P* is defined by

P*= -\ lim lJ'T|X(f)|Zd: (3)
D*r—~aTh ’

X(f)= f T xit)e-*dr, (@)

wherex(t }is the contour waveform, o = 27f,f = V /A, and T
is the sample length.

Figures 4(b}-4(d) demonstrate that, regardless of longi-
tudinal position along the jet axis, the upper and lower wave-
forms have a single (narrow) band of wavelengths which
dominate the power spectrum. In this study we refer to the
predominant wavelength (4 corresponding to maximum P *)
as the meander wavelength A, . Figures 4(b}—4(d) show also
that the upper and lower waveforms have the same meander
wavelength and, in all cases, the meander wavelength scales
with the jet diameter. Furthermore, the upper and lower
waveforms are in phase: this conclusion follows from the
cross correlation function

S
r*= — lim — | xitWit + 7\ds, 5
pTam -« | (£ it + 7)d 3)

where x|t ) and yi¢ ) are the two waveforms, and r is the prede-
termined phase shift (lag) between the two waveforms. As

shown in Fig. 4(e) the cross correlation function 7* reaches
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its peak value at zero lag, which indicates that the upper and
lower waves are in phase. In conclusion, the flow regime
documented in this study is not axisymmetric (varicose), but
one which is characterized by a large-scale sinuous shape of
wavelength 4, .

Similar conclusions regarding the existence of a charac-
teristic meander wavelength emerge from the analysis of
Figs. 5(a) and 6(a). Due to space limitations, only two sam-
ples are reported here as Figs. S(b) and 6({b), while the com-
plete record of the wavelength analysis may be found in Ref.

20.
Figure 7 shows a summary of the 4,,, measurements

yielded by the present study. The plotted A,,,, represents the
average over the given x segment, however, in reality the
meander wavelength is continuous in x.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

A theoretical interpretation of the present results is pos-
sible, based on both the theory of hydrodynamic stability
and the buckling theory of fluid columns. Batchelor and
Gill?' considered the linear stability problem associated with
an inviscid round jet discharging into a quiscent fluid. They
showed that sufficiently far downstream from the nozzle, the
jet is least stable to a temporal nonaxisymmetric (“'sin-
uous'?!) distrurbance whose axial wavelength is larger than
several times the jet diameter. Similar conclusions were
reached by Mattingly and Chang,?? who treated the linear
stability of spatial disturbances imposed on the same jet con-
figuration. In addition, Mattingly and Chang?®? studied the
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SRS natural instability of the jet in the laboratory and reported dicted in Refs. 21-23 was recognized by Hoyt and Taylor.**
excellent agreement between experimental measurements Based on photographs similar to the ones obtained in the
: and theoretical stability predictions. The same problem and present study, Hoyt and Taylor** were able to identify a visi-
A conclusions were discussed in a most recent study by Lopez ble axial wavelength of what is clearly a nonaxisymmetric jet
o and Kurzweg.? shape. In Fig. 10 of their study, Hoyt and Taylor** report
"'.-;'.‘ The connection between the nonaxisymmetric shape that the visible axial wavelength increases in the down-
DAY and fast capillary jets and the least stable disturbance pre-  stream direction, much in the same manner as 4, of fluids
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F1G. 5. Meandering jet of luid i1, D =3mm, ¥ = 11.2 m/s,a = 146 mm,
b = 324 mm. (a) photograph, (b} spectral density of segment 168-183 mm
downstream from nozzle; the upper and lower waveforms are labeled A
and O, respectively.

I and II considered in the present study (Fig. 7). Inspired by
the existing theoretical work of Batchel.: and Gill*' and
Mattingly and Chang,?? Hoyt and Taylor** interpreted their
two-dimensional photographic record as a helical {three-di-
mensional) instability with long axial wavelength, as predict-
ed by stability theory.

In a more recent experimental report, Freeman and
Tavlarides* showed that when a liquid jet is suspended in a

; ARG5S -,
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]
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FIG. 6. Meandenng jet of fluid [I1, D=3 mm, ¥V = 15.2 m/sec, a = 140
mm, b = 305 mm. 1a) photograph, 1b) spectral density of segment 267-278
mm downsiream from nozzle. the upper and lower waveforms are labeled
A and O, respecuvely
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FIG. 7. The measured meandering or buckling wavelength versus longitu-
dinal position along the jet.

cofluent stream, the jet develops 2 nonaxisymmetric shape
when the relative velocity between jet and stream reaches a
high enough value. Figures 2 and 3(a) published by Freeman
and Tavlarides® show a sinuous contour whose ratio (axial
wavelength)/(diameter) appear to be nearly identical to the
ratio visible in Fig. 6(a) of the present study. Specifically,
averaging over three complete wavelengths visible in Fig. 2
of Ref. 25, we obtain 4,,,,/D~-1.67. Also, averaging over
four complete wavelengths visible in Fig. 3(a) of Ref. 25 we
estimate A4,./D~1.47. Note that these two values of
Amax /D, 1.67 and 1.47, fall right in the middle of the narrow
band of characteristic wavelengths revealed by the power
spectrum of Fig. 6{b} in the present study.

To summarize, classical hydrodynamic stability argu-
ments predict correctly the instability of the jet column to
nonaxisymmetric disturbances, as well as the scale of the
axial wavelength of such disturbances. However, there is one
additional result which now has been documented by three
independent experiments (Refs. 24 and 25 and the present
study) which is not predicted by existing hydrodynamic sta-
bility analyses. This additional result is the tendency of the
nonaxisymmetric Wave to show a A.,,/D value which ap-
proaches 1.5 in a region close enough to the nozzle where, as
discussed by Hoyt and Taylor,?* the nonaxisymmetric dis-
turbance has not had time to be amplified due to the form
drag interaction between the liquid jet and the ambient air.

Insight into the origins of this additional feature is of-
fered by the buckling of fluid columns.?*>! It is worth noting
that as a theoretical viewpoint in fluid mechanics, the buck-
ling theory is much newer than hydrodynamic stability the-
ory. The novelty of the concept of fluid column buckling
may indeed be responsible for the early interpretation of
nonaxisymmetric disturbances in fast capillary jets as heli-
cal. In fact, the experimental record available for this inter-
pretation is exclusively two-dimensional and, as such, the
same record can be interpreted as evidence of local buckling
in a plane determined randomly by the presence of random
disturbances at the air interface.

This alternative interpretation is recommended strong-
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3 graphed in Fig. 6{a). The similarity of the two waveforms is
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(b)

FI1G. 8. The theoretical (Ref. 30,31) shape of a buckled inviscid jet vis-a-vis a
closeup of Fig. 6(a).

ly by the first observations of fast capillary jet flow, in parti-
cular by Weber's'® Figs. 1(b), 1(d), and l{e). In these ecarly
photographs the lateral deformation of the liquid column
has a local {nonperiodic) character, however, the wavelength
of this deformation is always a charactenistic multiple of the
jet thickness. The same effect is visible in Fig. 6(a) of the
present study, where entire sections of the jet appear to be
undisturbed while other segments show the characteristic
waved ...

Theoretically, it has been shown that a column of vis-
cous fluid can buckle in a way similar to rods in axial com-
pression,*®?” however, the wavelength of the buckled shape
depends solely on the wavelength of the initial lateral distur-
bance. On the other hand, for a column of inviscid fluid, it is
found that the buckling wavelength always scales with the
column diameter,*®*! 1 /D = 7/2 = 1.57. This prediction
can then serve as explanation for the observed axial wave-
length of incipient nonaxisymmetric deformations in fast

o capillary columns.

Figure 8 compares graphically the theoretical buckling
shape of a round jet**! with a closeup view of the jet photo-

striking.

3 A strong indication that the buckling theory of inviscid
[ jetsaccounts correctly for the meandering wavelength docu-

mented in this study is that the wave of Fig. 6(a) agrees well

-~ with the wave photographed by Freeman and Tavlarides.?*

X .. Note that for fluid III the Reynolds number is in the range

10-100 and the Weber number in the range 10°-10%; these

pt ranges are quite different from Ref. 25 where Re~ 10* and
~.. We~ 14. The fact that despite such discrepancies the photo-

graphed wavelengths agree with each other and with the

-::.:: buckling wavelength =D /2 supports the buckling theory
".~« very strongly. The key result of the buckling theory is that

. 5 words, it must be independent of ¥ and physical properties.

s

. the buckling wavelength must depend only on D, in other

Phys. Fluids, Vol. 25, No. 9, September 1982

For the same reason, the fact that for fluids [ and 11 &,
increases with x is a reflection of the thickening of the air
stream entrained by the liquid jet. Thus, sufficiently far
downstream the liquid jet meanders according to the buck-
led shape of the surrounding {thicker) air stream.

The connection between the nonaxisymmetric flow of
fast jets and fluid buckling requires further study. Some re-
seachers have already expressed the view that fluid buckling
may serve as origin for the turbulent motion of fluids.’*>»
Along the same lines, it is interesting to note Lopez and
Kurzweg’s statement that the nonaxisymmetric instability
of jet flow may actually account for *‘the breakdown pheno-
menon in boundary layer flow,” hence, for the well-docu-
mented bursting process.*
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AL Bejan, Boulder. Colorado

Abstract. This paper reports a theory which explains the flicker-
ing motion of turbulent plumes as well as their large-scale sinuous
structure. The theory 1s based on the fact that the invisaid region
o of the plume (the “plume coiumn™) possesses c¢lastic properties
analogous to those of elastic rods subjected to longitudinal
compression. [t 1s shown that the straight plume column 15 not
stable and buckles. The distance between two consecutive clbows
ts proportionai to the local plume diameter, in other words. the
shapes of all buckled piumes are ceometrically similar, A buckled
plume collapses periodically due to the interaction ot its lateral
elbows with the stagnant ambtent. This interaction is responsible
for the intermittent formation of large-scale buoyant eddies on
the periphery of the turbulent plume.

Theorie der veriinderlichen gewundenen Struktur in turbulenten
Auftriebsfahnen

. Zusammenfassung. Dicse Arbeit versucht, die flatternde Bewe-
- cung turbulenter Auftriebsfahnen und ihre groBriumige gewun-
L dzne Struktur aufzukliren. Man geht davon aus, daB der nicht-
.. zihe Bereich der Fahne (die .Fahnensdule") elastische Eigen-
: schaften besitzt dhnlich jener elastischer Stiibe. die longitudinalen
Verdichtungen unterworfen sind. Die gerade Fahnensiule st
nicht stabil und verbiegt sich. Der Abstand zwischen zwer Kriim-
mungen ist dem Ortlichen Fahnendurchmesser proportional. d. h.
die Formen aller gekriimmien Fahnen sind geometnisch dhnlich.
Die gekrimmte Fuhne bricht periodisch zusammen intoige der
Wechselwirkung 1hrer zettlichen Krimmungen und der ruhenden
. Umgebung. Dadurch entsiehen intermittierend grofiriumige Aut-
triebswirbel am Umtang turbulenter Auftriebsfahnen.

1 Introduction

Turbulent plumes represent an extremely frequent natural
phenomenon, in the atmosphere as well as in the hydro-
sphere. Furthermore, in heat transfer and environmental
engineering, the turbulent plume constitutes one of the
most effective mixing mechanisms known to man. The
state of knowledge on turbulent ptumes has been sum-
murized by Turner [I] and. as part of a comprchensive
monograph on buovancy-driven flows. by Turner [2]
Another extensive overview of the field was published
most recently by Fischer, List. Koh, Imberger and Brooks
[3]. A ¢nueul examination of these review works leads to

Theory of Instantaneous Sinuous Structure in Turbulent Buoyant Plumes
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the conclusion that the favored approach in turbulent
plume research s one where the “complications™ ot the
turbulent flow field can be smoothed out by the classic
method of time-averaging (Townsend. [4]). Consequentiy.
most of the theoretical work on buoyant jets rehies on the
axisymmteric flow mode!l which lends aself very well 1o
boundary laver-ty pe analysis.

Although mathematically attractive, the ume-averaged
turbulent plume concept does gross injustice to the phys-
1cs of the phenomenon. A turbulent exhaust plume does
not rise straight up into the air, with a fixed shape
resembling that of an inverted cone or funnel. A real
plume executes a periodic lateral movement: the plume is
not straight. rather. 1t has recognizable bends separated by
distances of the same order as the plume diameter. The
smoke rising from a barbecue or camp {ire “snakes” into
the air. This large scale mouon. which 1s 50 etfectively
blacked out by time-averaging. can be seen clearly in
Fig. 1.

The object of this paper is to present a theory which
explains for the first time the instantaneous structure und
the “tlickering™ nature of turbulent piumes.

2 The Concept of Elastic Plume Column

Consider a fluid of density o rising vertically through a
heavier fluid of density 0 + Jo. We model the starting sec-
tion of this buovant stream as inviscid. This means that for
a certain height at the base of the plume we are neglecting
the shear interaction between the plume fluid and the
stagnant ambient. This is permissible for a height of the
order of 4=6 times the plume diameter. where. as shown
by Crow and Champagne [5]. the plumce-ambient shear
laver o thin compared with the plume diameter. Having
neglected the interaction at the plume-ambient intertace.
it s helptul to imagme the plume fluid as beinz sar-
rounded by a thin flexible sleeve feontrol surfucer whch
S stationary with respect o the stagnant ambrent.
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Fig. 1. Large-scale periodiestructure in the plume
above a natural gas well on fire — Douglas Pass.
Colorado (AP Laserphoto. reprinted from the
Longmont Daily Times-Call. Oct. 1§-19. 1980)

Imagine now a cut perpendicular to the plume axis. If
the column s straight. 1n the cross-section generated by
the cut we distinguish only the compressive force (impulse
(6]

C=otd1. (2.1)

i

where } and A are the plume velocity and cross-sectional
area. If the plume column is slightly curved. we distin-
guish also a cross- ectional bending moment M. This
bending moment ts due primarily to the fact that the
plume tluid travels relatively faster through regions of the
cut which are located on the inside bank of the bend. It 15
easy to show that the cross-sectional bending moment M
is present as soon as the column acquires curvature.
Consider for this purpose a bending test in which the
uniform stream (0. 1. 4) passes through a slightly curved
duct: the radius of curvature of the duct centerline R, is
intinttety greater than the plume diameter. D. The Bernoulli
cquaiion apphed along a streamline requires ( Prandd [7]).

1

—oli=
0

o+ P (2.0)
where the left hand side applies to the straight section
(P =) while the right hand side corresponds to the curved
sectton. Equilibrium in the radial direction requires also
(Prandtl {8]).
ot? dP

23
R.c dy ( )

where vy the radial coordinate measured 1n the plane of
cursature away tfrom the plume centerline. toward the
center ot curvature. Combrung bas 2.2y and (2.3, we
ubtam

r—lii-F—l. /—(f e ) (2.4

The cross-sectional bending moment M can now be calcu-
lated by writing

M=o +P)rvdd (2.5)
E}

which. using Egs. (2.4) and (2.2). vields
ol”

M==—\113d4. 2.6
R f’\.l d. (2.6

Note that the area integral appearing in Eq. (2.6) is the
area moment of inertia (/ = n D*/64) emploved routinely
in the study of elastic beam f{lexure (Den Hartog [9)). The
group o }* plays the role of “modulus of elasticity™: this is
why it becomes increasingly difficult to manually bend a
hose as the turbulent (inviscid) flow rate through it
Increases.

At this point we conclude that the plume column is 1n
axial compression and that the cross-sectional hending
moment ts proportional to the curvature of the centerfine
{1 'Ry). With such properties. the straight plume column
becomes analogous to an elastic column subjected to axial
compression (Den Hartog {10]). This analogy guarantees
that if the plume is tall enough, it will buckle like an
elastic rod compressed between the ends. In the next
section we develop the “buckling theory™ of turbulent
plumes viewed as elastic columns,.

3 The Natural Buckling of a Straight Plume
Rising from Rest

Consider the stattonary control volume detined by two cuts
normal to the plume column. at = and = + d- (b 2. The
halance of vertical forees acting on this volume dictates

de to A (3 h
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Y
Fig. 2. Static equilibrium of a segment of vertical plume column

The conservation of mass through the control volume
requires also

V(z)A(z)=0Q, constant, (3.2)

where Q is the volumetric flowrate through the plume
column. Combining these conservation statements we
obtain

[ ve

4
()= (2-——5gg z] . A@E)=Q/V(2). (3.3)

where we made the additional assumption that the plume
fluid originates from rest, ¥ (0) = 0.

As in the buckling theory of a vertical flagpole (Timo-
shenko and Gere {11]; Den Hartog [12]), the rotational
equilibrium of the plume element d:- requires

CdY+M-(M+dW)=0 3.4)
or, using Eq. (2.1) and (2.6).
,_,Awd’_+i(z_>r=1c:—f)=o. (3.5)

Note that in the limit of vanishingly small curvature,
1/R, = — d*Y/d:z*. Taking into account the :-dependence
of V and A. Eq. (3.3), the equation of flexure (3.5)
becomes

&y N 47n(2g do/0)* 124y
d-s Q T od:
The first important conclusion of this analysis is that the

plume column develops a “structure” whose characteristic
vertical dimension scales with
0 vs

o= l—_— . 37
(Rer"_r/Jg/._;) G-

0. (3.6)

The verucal length scale can also be written as

=D v
) . constant (3.7a)

W= "6

where D(z) is the plume diameter at level = (note that
D(z) ~ ==ty Introducing the dimensionless coordinate
X =1z/z,. the equation of flexure becomes

d'y dr

2

. 0. (I8
d-? dv )

The general solution to this equation is expressibie in
terms of Bessel functions (Watson [13])

dy ” 5 " .
oK N2 S0 (475 X7 + Ky XV T s (475 XYY (3.9)
where K, and K, are arbitrary constants. Noting that

dy
Im—=K,x+K,. (3.10)
-0 4X

we set K, = 0. which accounts for the fact that in the very
beginning the buoyant fluid rises vertically. The shape of
the plume column. Y (x). is obtained by integrating (3.9).

Y(v)=K i mY> Ja5(m) dm (310
0

where

E=4/5 v, (3.12)

The integral appearing in (3.11) was calculated with sixth-
digit accuracy, by first expanding Jas(/m) in a power
series. The principal values of this integral are reported
here in Table |. because thev are not available n the
literature.

Table 1
N ].m”s Jas(m) dm
]
0.5 0.172638
1 0.492870
1.5 0.852135
2 1.168617
25 1.380308
3 1.452918
33 1.384381
4 1.203166
45 0.960384
5 0.717376
5.5 0.531599
6 0.443935
6.5 0.470241
7 0.598886
1.5 0.794658
8 1.007952
8.5 1.186949
9 1.289889
95 1.294589
10 1.203059
10,5 1.040267
n .847522
1.5 0.672151
12 0.556040
12.5 0.52575%
13 0.586520
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Fig. 3. The buckled shape of the plume column centerline

The magniftied shape of the buckled plume column is
shown in Fig. 3 as the function }(x)/K. It should be
remembered that Eq. (3.11) is the result of a smull
amplitude analysis ( dY/d= < 1), hence, the amplitude X
s negligible when compared with the vertical length
scale z,. The static equilibrium of the straight plume
column is indifferent [10]. however, given the slightest
lateral disturbance, the plume buckles in accordance with
the vertical periodicity shown in Fig. 3. The buckled
shape is a succession of elbows whose spatial frequency
increases with height. The first four elbows are located at

v, =878, n,=5101, x;=7.101, x,=8.967.

According to the classical arguments of Hydrodynamic
Stability Theory [14]. the sinuous shape will be amplified
due to the dynamic interaction of the elbows with the
stagnant ambient. It is this interaction which leads to the
formation of large turbulent eddies visible in most atmo-
spheric plumes (Fig. 1).

4 Formation and Evolution of Large Eddies

The mechanism ot ¢lbow turbulence formation is shown
schematically in Frg. 4 Speaking only qualitatively. in the
first phase of the process the segment of plume column
located in the victmity of a natural ¢lbow 15 pushed to the
side by the horizontal resultant of the two axial compres-
sive torees. The lateral movement of the elbow iy eventu-

Wirme- und Stoftubertraging 160 (1982

ally blocked by the pressure build-up assoctated with
either the stagnation of some plume fluid into the sull
ambient. or with accelerating some of the umbient fluid.
This pressure build-up is consistent with the fact that in g
calumn of finite curvature the pressure increases i the

radial direction. Eq. (2.3). At the end of the first phase of

the process. the clbow hus degenerated into a4 buoyant
edds of mixed flurd: this eddy rotates as shown in the
figure. and rises slower that the unmixed plume fluid
found at the same altitude.

The sccond phase of the mechanism is triggered by the
eftect of high pressure nodules already present on both
sides of the plume column: the plume buckles in a4 new
mode. feeding its stream through the structures generated
by the old set of elbows. At the end of the second phase.
the new column gives birth to a new set of large eddies
which continue to rise. In general. the eddies produced by
the upper clbows interfere with older eddies rising trom
lower levels. This interaction is partly responsible for
lateral growth of the turbulent plume, as x increases.

The most regular feature in the evolution of the
turbulent plume column is the root section. 0 < x < x,.
which precedes the formation of the first elbow. The root
of the plume swings back and forth, not necessarily in the
same plane. with a characteristic frequency. f, = 1/{21n.
The half period 4r of this flickering motion can be
calculated by integrating the first of equations (3.3): 7 is
the time interval needed by plume fluid to rise from - =0
to the first elbow. =, = x, z,. Combining this result with
Egs. (3.7) and (3.3), we discover that the Strouhal number
based on the plume velocity and diameter at the first
elbow. I, and D,. is a universal constant for ail inviscid
(turbulent) plumes
St =-"%=0.534. (4.1)

1
Another interesting result of the buckling theory is that
the large elbow structure (the distance between elbows)
scales only with the plume diameter, which means that
the buckled shapes of all inviscid plumes are ceometncally
stmilar. This prediction agrees with the observed structure

L — S -

v Y
Fig. 4. Mechanism of formation of large-scale eddies in a turbu-
lent plume rising from rest
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Fig. 5. Universal geometry of buckled plume columns

of atmospheric plumes. According to Eq.(3.7a), the
plume diameters corresponding to the first four elbows
are,

D; 4
= =3.071, 2662, 2.45.2.332. 4.2)
<n Xi

Figure 5 shows a scale drawing of a round plume and the
relative location of the first four elbows. This untversal
geometry agrees very well with visual observations of
turbulent plumes rising above barbecues and camp fires.
It also agrees with the plume photographed in Fig. 1.

3 Laminar Plumes vs, Turbulent Plumes: The Transition

The instantaneous sinuous structure and the eddy forma-
tion mechanism described so far, apply only to large
Reynolds number (turbulent) plumes which can be mod-
cled as inviscid. The present theory does not apply to
laminar plumes. It is important to note, however, that the
universality of the sinuous structure (Fig. 5) povides a
theoretical explanation for the phenomenon of transition
from laminar to turbulent plume flow.

According to Eq. (4.1). the base of the plume fluctua-
tes within a characteristic time interval which is propor-
tional to the diameter and inversely proportional to the
velocity, This local characteristic time,

/"
IMuctuation ™~ '[_)';TTL . (5.1

T

represents the “natural heartbeat™ of the plume as an
inviscid stream. If the piume tlow is highly viscous
taminar). the plume column has a different characteristic

time: the viscous local time 1s ussociated with the travel of

information by viscous diffusion from the plume-ambient
intertace to the plume centerline (total distance D/2). he
viscous communication time is given by the solution (o
Stokes’ first problem [13].

D;

D,/ | , .
= ~ i or viscous T T . (3.-)
2 (v [\'lscous)L. lov
The plume flow remains laminar if the ambient cun
communicate viscously with the stream fuster thun the
stream can fluctuate. If the column cun fluctuate faster
than the viscous ditfusion time. then. of course. the flow
opts for the inviscid (turbulent) regime. At transition. the

viscid and inviscid time scales are of the same order of

magnitude; combining Egs. (5.1) and (321 we conclude
that the laminar-turbulent transition is marked by
V. D,

N

30. (3.3

This theoretical estimate ot the transition Revnolds num-
ber agrees very well with experimental observations and
with estimates based on hydrodynamic stability expernments.
Experimentally. it is well known that the transition in tree
jet and wake flow occurs in the vicinity of Re ~ 30 (see.
for example, Schlichting [16]). The hydrodvnamic stability
of buoyant plumes and wall layers has been studied exten-
sively. as summarized by Gebhart [17]. For example. the
lowest Reynolds number where instability has been de-
tected in vertical laminar boundary layer flow over a
constant-flux wall is of order 67 (Fig.8=21, [17]). The
difference between this estimate and Eq. (5.3) is explained
by the fact that in [17] the local Reynolds number (G*) is
based on the thickness of the laminar boundary layer. If.
instcad. the Revnolds number is expressed based on the
displacement or momentum thickness (more consistent
with the stug flow model employed in the present theory )
the the transition Re is a number of the same order as In
Eq. (5.3).

6 Concluding Remarks

The demonstrated ability to correctly predict the transi-
tion to turbulence is additional evidence that the sinuous
structure (Fig. 5) and the characteristic time scale (Eq. 4.1)
are real properties of all turbulent buoyant plumes. It is
important to recognize also that the lurgescale hucklog
phenomenon described v this paper s not observed enly
in buovant plumes as in Fig. 1. The same phenomenon has
been observed and described as “orderly structure™. “cork-
screw shape”™, and “whiplash motion™ in the starting
section of low speed turbulent jets (Crow and Champagne
[5]: Rexnolds [18]). Others have recogmzed this snake-hike
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shupe as the cause of the intermittency phenomenon (Yih
[19]. Fig. &b, and pp. 545, 546). In the field of boiling heat
transter we are familar with the occurrence of tall S-
shaped vapor bubbles {buckled vapor plumes) on intense-
Iy heated horizontal surfaces: this phenomenon is recog-
nized as the “continuous vapor column regime™ (Figs. 2d
and 2j in Moissis and Berenson {20]).

The reader can easily reproduce the natural buckled
shape by experimenting with the continuous water column
falling from the kitchen faucet. This water column is a
“sinking” plume defined not by a flexible plume-ambient
interface as in Fig. 1. but by the flexible hose provided by
capillary forces. Placing his finger about 1—2c¢m under
the faucet. the reader can buckle this sinking plume into a
shape which resembles very closely the shape shown in
Fig. 5. rotated by 180°. In the kitchen faucet experiment
the buckled column does not break up. since the lateral
growth of its elbows is suppressed by the effect of surface
tension. The same stabilizing effect is present in the S-
shaped tall bubbles photographed during intense boiling
by Moissis and Berenson [20].

From the point of view of theoretical research in fluid
mechanics. the Buckling Theory reported in this paper
represents a dramatic departure from accepted methods
such as Hydrodynamic Stability analyses. For the first
time. the Buckling Theory focuses on the equilibrium of
fluid flow as a finite size system: the new result is that the
inviscid plume possesses a new property — buckling — and
that the buckled shape is behind the observed *“large-
scale structure™ of turbulent piumes. The Buckling Theory
predicts for the first time the transition to turbulent
plume flow: the transition is an internal property of the
strcam. the competition between two stream properties
{/ ftuctuation AN Tviscous). Thus. the Buckling Theory explains
the origin of turbulent fluid motion [21].
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Theoretical considerations of transition
to turbulence in natural convection

near a vertical wall

A. Bejan and G. R. Cunnington®

Hydrodynamic stability analysis of an inviscid wall jet shows that instability is
possible above a characteristic disturbance wavelength which i1s proportional to the
jet thickness. This scaling is the basis for an argument that transition occurs when
the fluctuating time perniod of the unstable (inviscid) wall jet is of the same order
as the viscous diffusion time normal to the jet. The transition must occur when the
jet Reynolds number is of the order of 10°. Published observations of transition
along a heated verticat wall are reviewed in order to test the validity of the proposed
scaling argument. Specifically, numerous observations on buoyant jets near isother-
mal walls, near constant-heat-flux walls. and in enclosures with vertical isothermal
walls are shown to support the validity of the transition mechanism proposed

Key words: convection, turbulence, fluid flow

Transition phenomena have been studied extensively
during the past half-century. This work has been
brought in perspective in a number of review papers,
for example by Tani' and Reshotko® for boundary
layer low and by Gebhart® for natural convection
flow.

The object of this study is to propose a scaling
argument as basis for transition to turbulence in the
wall jet lows encountered in natural convection along
heated vertical walls. First, linear stability analysis of
a wall jet indicates that the flow is unstable to disturb-
ance wavelengths greater than a certain multiple of
the jet thickness D. Based on this proportionality, it
will be argued that transition is ruled by the internal
competition between two time scales, the jet fluctua-
tion period and the time of viscous penetration normal
to the flow direction. A comprehensive review of the
published experimental observations on transition
supports the validity of this scaling argument. Finaily,
it is shown that photographs and numerical simula-
tions of transition in vertical enclosures heated from
the side visualise the transition mechanism described.

Hydrodynamic instability of an
inviscid wall jet

Consider the flow of an inviscid jet U(y) next to a
vertical wall, as shown in Fig 1. We want to know
the waviness of the jet as it becomes unstable, in other
words, the frequency of its fluctuation relative to a
fixed spot on the wall, which can be obtained by
performing a linearised stability analysis of the flow.
This analytical approach is outlined by Lamb®. By

* Department of Mechanical Engineering, University of Colorado,
Box 427, Bouider, Coloradc 80309, USA
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superimposing on the base flow (u=U, v=0)
unspecified disturbances:

u=U+u' (1)
v=v' (2)

the inviscid low (Euler) equations yield the vorticity
transport equation:

U)o (3)
x y

Dr2

NONNNANANNYN

U=Ug
/I\ uin
u=0

NMOUONNNANANAN

y
Fig I Wall jet velocity profile
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with the vorticity defined as:

ae’ au' dU
LU L 4)
ax  ay dy

Linearising Eq (3) vields:

7 a\fav @ U
('—+ UL)(——Q‘—)——v =0 (5)
at ax/\ox ay dy?

Next assume that the disturbance velocity components
are both periodic in x:

u'=u, ek (6)
CI= U* eukrv—-rll (7)
where k is the wavenumber (k =27/A). Substitution
of Eqs (6, 7) into the vorticity transport equation and
the mass continuity equation, and the elimination of
u, vields a single equation for the transversal disturb-

ance amplitude v_,
d*U
) E’k «=0 (8)

Our interest is in the wavelengths A or
wavenumbers k for which o isimaginary, ie for which
the assumed disturbance is likely to be amplified (Eqs
6,7). As shown in Fig 1, we assume a triangular

velocity profile, so that in all regions of the flow
d2U/dy*=0

(a’+kU)(

Solving Eq (8), the corresponding expressions for ¢
in the three regions are:

D e,=Ae¢ *““+Beh

I ¢,=Ce™*+D,e" (10)

D ¢, =Ee*+Fe"
The solid wall condition, ¢,=0 at y=0, and the
condition that ¢ must be finite infinitely far from the
wall. mean that:

A+B=0 (1D

F=0 (12)
Two more equations follow the condition that ¢ _ must

vary continuously from region I to II, and from II to
I

Ae kD24 B Ao C o A2y D ghr2 (13)

Ce-kD+D‘,ekl)=Ee~kl) (14)
Finally, the condition that the pressure must vary
continuously from one region to the next amounts to

integrating Eq (8) across one region-to-region inter-
face (eg from y=D" to y=D")":

(“kw[( ay) '<%)]
9@l e

I U_D_/o" O0<y<D/2
Uy
I1) U—D—/;( -y), D/2<y<D (9)
[ U=0, D<y
Notation
A B, C,

D, E F Coefhicients (Eq 10)
Jet thickness

g Gravitational acceleration
(in negative x direction)
c* 5“‘"‘( Eﬂ) (Eq 49)
: 4 PPE q
H Vertical length scale
k Wavenumber (27/A)
L Horizontal dimension of enclosure
m oD/u,+1 (Eq 18)
NB tv/tmin (Eq 29)
Pr Prandt! number
Ra Rayleigh number: Ra,—based on

vertical length scale H; Ra, —based
on cavity width L

Re Reynolds number

S vertical temperature gradient
t Time

T Temperature

u Velocity parallel to the wall

(x-direction)
¢ Velocity normal to the wall
(y-direction)

U, 0, Disturbance amplitudes

a, Critical wavenumber (27L/A.)

a Thermal diffusivity

B Coefficient of thermal expansion
o-kD/2

Y (Eq 18)

v Dlmenswnless stratification parameter

1 L 1/4
(4 SAT RaL)

5r Thermal boundary layer thickness
Sy Boundary layer where vertical
velocity obeys a no-slip condition
Wavelength

Vorticity

Disturbance growth rate
Kinematic viscosity

g >

Subscripts and superscripts

* Uniform heat flux

! Disturbances
min Minimum

v Viscous

B Buckling 632
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Applying this condition twice, at y=D/2 and at
y = D, vields two more equations:

D“(QH) e Ce oy (16)
D D
[l‘4—%(0’4-’\‘140)]6""[1+m(‘7+kuo)]oﬂ
+£((r+ku(,)(.-\—3)=0 am
4u,

Eqgs (11, 13, 14, 16, 17) are all homogeneous and,
together, they constitute a system for determining the
five unknown coefficients A, B, C, D,, E. A non-trivial
solution is possible if the determinant of this system
is zero:

m+m2y>*+kD-3-y)-y'(1+kD)+2y%*=0

(18)
where y=e¢*?'? and m=0D/u,+1. Eq (18) is
obtained by systematically eliminating the five
coefficients among Eqs (11, 13, 14, 16, 17). Whether
or not o is imaginary depends on the character of m:
since Eq (18) is a quadratic in m, am®>+bm +c,
imaginary roots are possible if the discriminant A=
b?-4ac is negative, ie when:

A=(2y*+kD-3-y")*+4y*(1 +kD)-8¥*<0 (19)

Solving A=0 we find that the wall jet of Fig 1 is
unstable (A <0) if

1.337 < kD < 3.427 (20)

In other words, the inviscid wall jet is likely to acquire
a waviness described by wavelengths in the range

1.833<%<4.701 21)

The conclusion that an inviscid wall jet of thickness
D is unstable only in a certain range of disturbance
wavelengths, agrees with earlier results concerning
other inviscid flows. For example, Rayleigh® found
that a free two-dimensional jet of triangular profile is
unstable for wavelengths A >1.714D. Rayleigh also
found®that a free shear layer of thickness D is unstable
if A >4.914D. It is significant that for several different
base flows, from the wall jet of Fig 1 to Rayleigh’s
free shear layer, the edges of the wavelength domains
for inviscid instability are marked by wavelengths
which scale with the flow thickness D. We feel that
this scaling is important and, ultimately, responsible
for the phenomenon of transition to turbulence®. This
scaling is the basis for the transition criterion outlined
next.

Time scale criterion for transition

Each longitudinal length scale A and the jet velocity
U define a time scale:

A
vy/a
This time scale is the period of the jet fluctuation as
seen by an observer positioned on the vertical wall.

Note that U/2 is, in an order of magnitude sense, the
wave velocity relative to a fixed spot on the wall.

t

(22)

int J Heat & Fluid Flow

Thus, the Aluctuation time of the wall jet as an inviscid
stream is:

A
t=t = e 2
mn =70 23
where, according to Eq (21):
Avn=1.833D (REY

In conclusion, ¢, ~ D; this proportionality appears
as a straight line in Fig 2, showing that an inviscid
wall jet of thickness D can become unstable within
a time interval t>¢ .

The issue of whether or not the wall jet will
become unstable is decided by examining the ‘invis-
cidity’ of the flow. Inviscidity or viscidity is a flow
property, not a fluid property. If the wall jet tends to
fluctuate (wave), then jet fluid will tend to make
contact with the solid wall and the adjacent semi-
infinite fluid reservoir intermittently, at time intervals
t>t.... The wall jet, as a flow, remains inviscid if
during each interval ¢ it cannot learn by viscous
diffusion of the presence of a restraining ambient.
The characteristic time of viscous penetration (¢, )
from the wall and from the outer edge of the jet to
the jet centreline (over a distance D/2) is given by
the solution to Stokes’ first problem™:

D
2 (25)
2v ut,
or:
D2
t,~— 26
Y 16»p (26)

Locally, no jet will remain inviscid forever. Fig 2
shows that if the fluctuation time exceeds the viscous

tmin

STABLE (invisqid) </~ UNSTABLE (inviscid)

0
INVISCID#=— == VISCID
tyv
T | Transition_
£ VISCID
S (stable)\

Fiuctuation time

Fig 2 Internal competition between two characteris-
tic times, the minimum period for inviscid instability
(tmin)and the viscous communication time® (t,)
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communication time ¢,, the jet will remain laminar
because it will continue to be restrained viscously by
its ambient.

The instability predicted by so many hydro-
dynamic stability studies is therefore possible only if
t, exceeds ¢,.. In Fig 2, this condition corresponds
to the intersection of the ¢,,,, ~ D line with the ¢, ~ D?
line:

L=t 27)

The phenomenon of transition to non-laminar flow
appears to be governed by the time criterion:

O(Ny) =1 (28)
where:
t DU
Ny="""=— 2
By 38v (29

nun

The object of the remaining presentation is to test the
N~ 1 criterion against the voluminous experimental
record available on transition in natural convection
along a vertical heated wall. Note at this point that
the Ny~1 criterion is equivalent to Re~38»1,
where the Revnolds number Re is based on the local
U, D scales of the buoyant wall jet. Experimentally
(as described later) it is found that the transition cor-
responds to a Re constant considerably greater than
unity (Re ~ 107). The contribution of the time scale
argument that led to Eq (29) is to predict a transition
Re much greater than unity; unlike the present argu-
ments, classical scaling arguments regarding the rela-
tive size of viscous and inertial terms in the Navier-
Stokes equations or in the Orr-Sommerfeld equation
reveal Re ~1 as a critical dimensionless parameter.

It is also worth noting that, theoretically, the same
transition criterion (Ny ~ 1, or Re ~ 107) is recommen-
ded by the buckling (meandering) property of inviscid
streams®. This coincidence arises because the buck-
ling wavelength of a two-dimensional inviscid jet®,
Ap=7v3D=1.81D, is practically the same as the
minimum wavelength for inviscid instability,
Ann=183D. It has been shown® that the Ng~1
criterion anticipates correctly the transition to tur-
bulence in free jet and wake flow.

Scale analysis of natural convection along a
vertical heated wall

To be able to apply the time-scale criterion, a theoreti-
cal understanding of the two wall jet scales (U, D) is
essential. Consider the flow near a vertical wall, driven
by the temperature difference AT between wall and
fluid reservoir. In general, the flow thickness (D) will
differ from the thickness of the fluid layer heated by
the wall® (8y). The boundary layer-approximated
equations governing the conservation of mass,
morr:entum and energy in the system shown in Fig 3

are'”;
A 1N
oo (30)
0x oy
A A a*
w0 =y Tl (T T, @31

(32)

g
Tt

"\ %

woere x, y, u, v, T, v, g B and a are the co-ordinates,
velocity components, temperature, kinematic
viscosity, gravitational acceleration in the negative
x direction, coefficient of thermal expansion and
thermal diffusivity, respectively.

Let 81 be the thermal boundary layer thickness,
ie the slender fluid region in which the wall heating
effect is felt. In this region, the heat conducted
horizontally from the wall into the fluid, represented
by the scale a AT /63 from the energy equation (Eq
(32)), is converted into enthalpy flow in the vertical
direction, ud7T/H. Thus, the balance between con-
duction and convection in the layer of thickness 8,
requires the following equivalence between the
corresponding scales:

udT AT 24
~ a5 (33)
H 63
or:
u~aH/83 (34)

The momentum equation (31) accounts for the com-

petition between three forces: inertia, friction and

buoyancy. The scales of these forces are, in order:
u* u

=7 v, AT (33)

H 5% &k

Assuming first that the effect of inertia is negligible,

and that Eq (31) is a balance between buoyancy and

friction, we write:

v ~gB AT (36)
o7

r
by 6y
v 1
1
1
D 6y 5
Pr>1 Pr<i
Scaling Scaling

Fig 3 Relative sizes of thermal and cvelocity boun-
dary layers for high and low Pr fluids
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Using Eq (34) we find that, in a 81 layer dominated
by a balance between buovancy and friction, the
scales are:

~ HRa,'"
u~aRa}*/H

The Rayleigh number based on vertical length scale
H. Ra,,, is defined as

g8 ATH'®

al’

(37)

Ra,, = (38)
With the sume assumptions that led to the scales ubove
tEq (37)), the negligibly small ratio inertia/friction,
or inertia/buovancy, requires

u ' H 1
— ~—«]
u/83 Pr

{39)

In conclusion, the scales are valid in high Prandtl
number Huids (»/a » 1): as shown on the left side of
Fig 3, Pr» 1 fluids develop an additional length scale
D, which is the thickness of the wall jet referred to
in the time criterion for transition (Eqgs (28, 29)). The
D scale follows from the momentum equation scales
(Eq (33)). Outside the thermal boundary layer the
fluid is isothermal, hence, the buoyancy force is negli-
gible relative to both inertia and friction. The
equivalence of inertia and friction scales in the layer
of thickness D:

L \40)
H D*

in conjunction with scales (37) yields:
D~ Pr''?8.~ HPr"2 Ra;}'* (41)

for Pr» 1. The size of the wall jet relative to the
thermal boundary layer is shown schematically in Fig
3. The D scale (Eq (41)), will be used later in the
application of the transition criterion.

It remains to establish the u, 81 and D scales
prevailing in the case where the momentum equation
represents a balance between buovancy and inertia
in the laver of thickness 8 (note that the Pr » 1 scales
(37) and (41) are based on a friction ~buoyancy
balance in the 8t layer). Writing:

3

u*

7B AT (42)
and using Eq (34) yields:

81~ H(Ra,, Pr)~V*

T (Ray, Pr) 43)

u~a(Ray Pr)'*/H

The inertia~ buoyancy balance governs the 8 layer,
except in a layver 8, immediately adjacent to the wall
where the vertical velocity v obeys the no-slip condi-
tion. In the 8, layer friction is an important effect,
hence:

u
"g:- ~gBAT (44)
Combining this result with the u scale given by Eq
(43) yields:

5.~HRa"* Pr' *~ 5, Pr'* (43)
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The relative magnitude of the 8¢ and 8, scales is
shown in the right half of Fig 3. Thus, we draw two
important conclusions: that the flow scales (43, 43)
which follow from a balance between inertia and
buoyancy in the 8; layer correspond to low Prandtl
number fluids; and that the thickness of the wall jet
in this case is the thickness of the entire layer heated
by the wall,

D~b.~H(Ra, Pr) "

for Pr«< 1. In what follows we shall rely on the above
dimensions to translate the time-scale criterion (28,
29) into the terminology in which the phenomenon
of transition has been recorded by previous studies of
natural convection,

(46}

Transition along a vertical heated wall

A relatively wide selection of experimental observa-
tions on the beginning of transition along an iso-
thermal wall was compiled already by Mahajan and
Gebhart'!. Table 1 reproduces this compilation and
shows the number G above which the buoyant wall
jet was noticed to become nonlaminar. The number

G is defined as:
c—4.z,f4(gﬁ ATH"‘)"‘

e
in other words:
G=4"Ray* Prt+ (47)

The time criterion (28, 29) can be rewritten in terms
of G, by using scales (37, 41) for Pr>1 fluids; taking
U~ u we have:

Ng= 08 38 (4%

Table 1 shows the Ny value corresponding to
each experimental report: in all cases O(N, =1,
which is the same as the time criterion for transition.
In conclusion, the experimental data on transition
along isothermal walls supports the theoretical argu-
ment that the transition phenomenon is marked by
the eqmvaleme of time scales ¢, ~ ¢

Table 2 is a compilation of transition observa-
tions made using a vertical wall with constant heat

e

Table1 Experimental observations on beginning of
transition along a vertical isothermal wall

Pr G Ng
Warner and Arpaci'? 0.72 466 308
Colak-Antic'"? 0.72 572 379
Cheesewright'* 0.72 600 397
Regnier and Kaplan'® 0.72 622 4.12

0.77 460-547 2.99-3.56

0.77 645-702 420457

0.77 541 3.52

0.77 605 394

0.77 378 2.46
Eckert and Soehngen'®  0.72 400 265
Hugot et al'’ 07 724 483

07 665 443
Szewczyk'® 6.7 534 202

.‘.‘-_-_ O .l-\,h,.('.....-

PR S i S IS DL R A I e T A e

E AN
SANSS

o ., . -._'. ‘:‘< R
--"‘. "’*l‘.i': :'(":1"41 {;thMMLM.:.L‘CB.\.&\.&L&._;u -LA.).L CaA el ah AN A e PN P ‘!_.3

»




X

.
]
.

TR S

S redy M

o

. c .
. S

R “-’

P e I .

[

.

l|"
Ve

e
.

PPPPEPFT TR T T e N T

flux ¢". The observations have been catalogued in
teris of Pr and the number G* defined'! as:
” 4 3
c* =-w(‘-"3" H ) (49)
kv*

In order to obtain the relationship between N, and
C*. we make the observation that for Pr>1 fluids
the thermal boundary laver thickness and vertical
velocity scale™? as:

. (“B;’ A ) (50)
va
aH
w-2f (31)
T

Substituting D~8; Pr' * and U~u into Eq (29)
vields:

C’!
Np~ s 2
P 210Pr ©

The Ny values corresponding to the experimental
observations are listed in the last column of Table 2.
Once again, the measured N; number is of order one,
in agreement with the theoretical criterion.

Fig 4 summarizes Tables 1 and 2. The experi-
mental observations on transition fall consistently in
the O(Ng)=1 domain in the Prandtl number range
0.7-11.4.

Table2 Experimental observations on beginning of
transition along a wall with constant heat flux

Pr G Ny
Mabajan and Gebhart'* 0.71 388-620 2.05-3.27
0N 400-650  2.11-343
Jaluria and Gebhart'? 6.7 504-802 1.36-2.16
6.7 563-802  1.52-2.16
Godaux and Gebhart® 6.7 528-979  1.42-263
Viiet and Liu® 6.2 855 2.36
6.4 955 2.61
6.4 900 2.46
5.05 960 2.81
Lock and Trotter®? 11.0 293 068
114 368 0.84

U VRN U S L " domd et J
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Fig 4 Variation of time rativ N, with Pr
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Transition in enclosures heated from the side

In the preceding section we saw that the experimental
observations on transition accumulated over the past
three decades support the idea that the fuctuation
{waving) time . matches the time of viscous
diffusion across the wall jet. Now, by focusing on
enclosures heated from the side, we have the oppor-
tunity to actually see the incipient waviness of the
two wall jets during transition. The visualisation of
the wall jet wavelength A is made possible by the
slow motion of the ‘core™?, ie the motion of the cavity
fluid sandwiched between the two fast-moving wall
jets. It has been discovered experimentally®® that in
a characteristic Rayleigh number range the core fiuid
engages in a cellular motion of the tvpe shown
schematically in Fig 3. A large number of experi-
mental and numerical studies have confirmed this
phenomenon, especially the fact that the number of
core cells increases as the Ravleigh number increases.
Table 3 shows a representative sample of experimental
and numerical observations.

In view of the theoretical discussion presented
earlier, it is reasonable to regard the cellular structure
of the slow-moving core as the reflection (the finger-
print) of the waviness acquired by the wall jets during
transition. Thus, the cell-to-cell distance visible in

AT o
| _—— Core flud
H
_ wall jet
Amin

R

Fig 3 Representation of buoyancy induced flow in
a cacity of large aspect ratio with one wall heated.
the other cooled, and the top and bottom insulated
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published photographs®>® can be interpreted as e ey
the wavelength A, of the wall jet. The distance r v Pr:0035 ‘
we measured from each photograph is listed as e Prio 7 |
{H/A ) expenmentat i1 Table 3. « o P
Fig 6 shows the relationship between the < & Pr-aso |
measured H /A, and Ra,. The wavelength A, g ° fre10co o ‘
; ! 5 o Pr:i000
decreases as the Ravleigh number increases. However, < !
the data supplied by an individual experiment (at =2 ° |
constant Pr) show very clearly the existence of a §° & 3° (
proportionality of the tvpe: g 5 ° ]
> L o* & i
_’_!_~ Ra!/? (53) 5 | v 7* . g |
/\mm g A *
Theoretically, such a proportionality is to be expected Z I * . |
because A,,,,~ D and D~ H Ra™*"* (Eqs 41 and 46). g +t . f
Thus the core flow data of Table 3and Fig 6 reconfirm ° !
the theoretical result that at transition the jet !
wavelength always scales with the jet thickness. 1110 At "éc .
The theoretical scale of H/A,,, can be calcu- Ro.* T
lated by writing A, =1.833D, and by using Egs
(41, 46) to evaluate the scale of D. Thus we obtain: Fig 6 Variation-of H/\ with Ral,*
1/4
(_ﬁ_) ....._Egﬂ__m (54)
Ain/ thery  1.833 Pri” for Pr« 1. The theoretical order of magnitude of
for Pr»1, and: H/A,,, is also listed in Table SA Figally, the ratio
. (A min)exn/ {A min)iheary Was calculated and plotted in Fig
(__1_{_) _Bay’ Pt (53) 7. It isxpclear‘t};;t the measured cell-to-cell distance,
Amin/ theory 1.833 (Aminesp» has the same scale as the theoretical A,

Table 3 Experimental and numerical observations on transition to turbulence in enclosures heated from
the side

Pr Ra,, H/L H/Amin
Experimental Theoretical
Jones?® 0.035 2.5x10° 10 1.61 5.28
0.035 5.0 x 105 10 3.49 6.27
0.035 1.0x10° 10 4.36 7.45
0.035 4.0x10° 20 6.45 10.55
0.035 1.1x10° 20 442 10.59
Lee and Korpeta?’ 0.7 1.8x10° 50 1.87 18.28
0.7 6.0 x10° 7.5 2.81 24.7
0.7 1.4x107 10.0 3.73 30.52
0.7 2.3x107 125 465 36.30
0.7 48x107 150 5.37 41.54
0.7 7.6 x107 175 567 46.59
0.7 1.1 x10% 20.0 7.46 51.10
Elder?® ? 1.7x10% 9.1 18.90 74.48
Seki at al*® 480 95x10° 30 8.60 4.37
480 95x10° 6 8.80 437
480 1.0x10° 15 8.39 443
480 50x10° 15 8.40 6.62
480 1.5x10" 15 5.40 8.71
Elder™ 1000 2.5x10° 19 417 3186
1000 27x10° 19 417 307
1000 34 x10° 19 7.98 417
1000 40x10° 19 11.54 434
1000 4.7%10° 19 857 452
1000 7.2x10° 19 910 5.03
de Vahi Davis and Mallinson®® 1000 5.0x10° 10 2.32 2.58
1000 95x10° 10 4.36 303
1000 33x10° 10 455 413
Int J Heat & Fiuid Flow 137




scale predicted by Eqs (54 and 33). The best agree-
ment between (A, )., and (A, ). Occurs at
extreme Prandt]l numbers (Pr=0.035 and Pr = 480):
This is a direct consequence of the fact that scales (34
and 33) are valid strictly in the limits Pr-»o« and
Pr-0, respectively. The in-between experimental
results (Pr=0.7) are least accurately represented by
either Eq (54) or Eq (33); nevertheless, the ratio
(A n)exp/ (X inhibeors fOr Pr=0.7 is practically indepen-
dent of Ra,,, stressing the earlier conclusion that A
alwavs scales with the thickness of the wall jet.

It is worth noting that the (A,,,,/H)~ Ra;'"?
scaling law recommended by the time scale criterion
(28) is consistent not only with the 27 experiments
reviewed in Table 3 and Figs 6 and 7, but also with
theoretical results known already from the hydrody-
namic stability analvsis of the vertical enclosure flow.
Attention is drawn to Bergholz's comprehensive study
of the flow stability in a vertical slot’®. As ‘base flow’
for the stability analysis, Bergholz considered a
counterflow velocity profile independent of altitude,
as would be the case only in an infinitely tall cavity®'.
He then accounted for the finiteness of the cavity
aspect ratio H/L by postulating the existence of a
constant vertical temperature gradient through the
slot, SIK/m]: note that in the vertical boundary layer
regime, the thermal stratification S is of order AT/ H,
where AT is the temperature difference in the
horizontal direction (Fig 3). By increasing the
dimensionless stratification parameter y =
(48S(L/AT Ray)"*, Bergholz was able to make the
base flow more jet-like, that is more like the vertical
wall jets of Figs 1 and 3, which are known to prevail
in vertical enclosures in the boundary layer
regime>*=>.

mwin

In Fig 7 of his study, Bergholz reported the
critical wavenumber a,=2x7L/A_ versus the stability
parameter ¥ and the Prandt] number. One very inter-
esting aspect of Fig 7 is that in the boundary layer
limit {y »1) and in the high Prandtl number limit
Pr—-«, the wavenumber of travelling modes is pro-
portional to y:

a=v, (56)

the proportionality constant being a number of order
O(1) (in the same limits, the wavenumbers of the
stationary modes are, numerically, not much different
than those of the travelling modes, however, they do
not appear to follow the line represented by Eq (56)).

LI
P ¢ * e e,
£ v o °
2 v 9 o a
[ ]
j’ ! . % a
c | 5 oo Q
E a
< |
oRE i : ! 1 )
157 9 ) 0" 10 oY 10"
Ra

-

Fig 7 Experimental/theoretical inviscid wacelength
ratio as a function of Ra and Pr (Pr notation as for
Fig 6)
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Noting the L-based definitions of both a, and y
employed by Bergholz™, it is easy to prove that the
a, ~ v scaling illustrated by Bergholz is actually:

H .
1~ Ray’ (57)

This scaling, predicted by the conventional stability
theory™ is the same as the scaling law (33) produced
by a much more direct argument above.

The agreement between the present approach
and conventional stability theory is illustrated further
by the fact that @ reaches asymptotically a O(l) con-
stant as y approaches zero. This is shown by Fig 7 in
Bergholz™, but is also predicted by the A,,,,, ~ D scal-
ing on which the present argument is based. Note that
as v decreases towards zero, the vertical jet thickness
increases and so does the wavelength (Eq (36)); but
this process cannot continue bevond the point where
the jet thickness becomes of order L because, regard-
less of how small y is, the slot of width L must house
two jets in counterflow. According to the A, ~D
scaling, both D and A,,,. must be of order L when
¥ <O(1): this also means ‘a.= O(l) constant as y = 0’,
which is precisely the behaviour unveiled by classical
stability analysis (travelling as well as stationarv
modes, Fig 7 of Ref 30).

Although the compatibility between the results
of conventional stability theory and the scaling results
based on the argument given earlier is relevant and
interesting, one should not expect one theory to ‘repro-
duce’ the results of a different theory. Unlike stability
theory, which is a mathematically precise approach.
the present theoretical argument is approximate and
based on the comparison of scales. This is why the
success of the present argument should be measured
in terms of its ability to predict the trends and orders
of magnitude revealed by the manv independent
experiments collected in Tables 1-3.

Concluding remarks

The published observations on transition to tur-
hulence in natural convection were reviewed in order
to test the validity of the time scale criterion (Fig 2)
for transition O(Ny) =1 or O{Re) = 10” formulated. It
was found that laboratory observations and numerical
simulations support the theoretical viewpoint that:
1. At transition, the wall jet exhibits a unique
wavelength which always scales with the thickness
of the jet.

2. Transition is marked by the equivalence of two
time scales, both properties of the jet region of the
flow, the minimum fluctuation period (¢,,,) and
the time of viscous diffusion normal to the jet (¢.).

The empirical evidence on natural convection along

vertical heated walls suggests that:

3. Transition along an isothermal wall is correctly
anticipated by the criterion O(Ng) =1, where Ny
is given by Eq (48).

4. Transition along a vertical wall with uniform heat
flux is correctly anticipated by the criterion
O(Ny) =1, where N} is given by Eq (32).
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A 5. The cellular low exhibited by the core fuid in an

enclosure is a reflection of the waviness of the two
wall jets during transition. The cell size, or the
wall jet wavelength, are correctly described by the
scales shown in Eqs (54) and (33).
Finally, the theoretical argument leading to the
O(N,) =1 criterion provides a theoretical basis for the
empirical notion that the transirion Reynolds number
is a flow constant considerably greater than unity.
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MECHANISM FOR TRANSITION TO TURBULENCE IN
BUO ANT PLUNME FLOW

SHIGEO Kivit ka and AbrIa Brias

Department of Mechanical b aginezring, Campus Boyv 427,
University of Colorado. Bouvider. CO G309 1 S A

IRCcetted 21 Judv 19R2 and on fonad form 25 Janiary 1983

Abstract  This paper reportsa theoretical und cvperimentalstudy of the fundamental mechanism responsibie
for transittonin natural convection plame low. Theoretcads s argued that the transivon vecurs when the
time of viscous penetration normal o the plume becomes comparable with the mm:mum time penod with
which the plume can fluctuate as an unstable inviscd stream. it s also argued that ot transition the piume
wavelergth must aiway ~ scale with the focal plume diameter. The experimental part of the study focused an
' transttion in the anisymmetnie atr plume above a point heatsource. Smoke sisualization of the plume shape at
transition led to extensive observutions that support strongiy the transiton mechanism proposed
theoretically. The trunsitional plume s seen to meander in a plane (two-dimensionally) and with a waselength
which scales with the plume diameter. If excited externully by many such waselengths, the piume has the
property to select the natural wavelength proposed theoreteaily. The cquivalence between the present

transition mechansm and the transiton predicted by the buckling theory 15 discussed.

NOMENCLATURE

D local plume diameter {m]

[ disturbance frequency [s ']

g gravitational acceleration [ m s~ 7]
H  loudspeaker height [m]

&k thermal conductivity [Wm ' K™']
N ratio between ¢, and ¢ same as buckling
number NV, [16. 21]

heat input [W]

time (s]

mn  minimum plume fluctuation ume [5]
. viscous communication time [s]
plume velocity [ms ']

X transition height [m]

min s

N -

-

Greek svmbols
g thermal diffusivity [m=s ')
Jii thermal expansion cocflictient [N ¥}
-/ wavelength {m]
rg  buckling wavelength [m)
‘e Minimum plume fluctuation wavelength [m]
v kinematic viscosity [m= s ']

Subscripts
B buckling property
0 reference state

LINTRODUCTION

mental engineering. atmospheric research. because
turbulence is the most cffective transport mechanism
known to man.

The buoyant plume is one frequent type among
the many occurrences of free-convection tlows in
engineering and other apphications. Inthis paperwe are
specifically interested in the axisvmmetric buovant
plume rising {rom a point heat source in @ quiescent
environment. Existing studies on such plumes and the
plume transition phenomenon have been summarized
by Gebhart [1]. who showed that considerable effort
has been devoted to this problem over the past few
decades. For example. the laminar 2-dim. and
axisymmetric plume has been studied by Yih {2, 3]. and
Brand and Lahey [4]. Probubly the most thorough
treatment of this problem is the numerical analysis by
Fam [3].

Experimental studies on the plane plume above the
line source were reported by Brodowics and Kicrhus
[6]. Forstrom and Sparrow [7]. and Schorr and
Gebhart [8]. The latter two works are concerned with
the plume behaviorin the transition regime as well as in
the laminar regime. Schorr and Gebhart observed by
means of interferometric flow visualization a regular
laminar ‘swaying’ motion at a large distance above a
line heut source. This type of boundary layer swaving
motion 1s amplified and eventually the low becomes
turbulent. Forstrom and Sparrow also observed the
existence of swaving motion at a fixed point 1n space

E-' THis is a study of the fundamental mechanismy which  near transinon. by means of a thermocouple placed
,’ T causes the transition to turbulence m buoyant plumes  midway between the nud-plane and the edge of the
P rising from a pomnt heat source The trunsition to thermal boundary laver

;:“«:j - turbulence s one of the most basie phenoniena which s e theoreticdi research on transition in plume How
by n not vet fully understood The nuportince of under- proceeded along the lines of hvdrodynamie stabihty

standing this phenomenon s selfeonident, cons, dor-
mg the importanee of predicting the ensuimg turbuient
motion of huds. The transition phenomenon .« par-
teularly importantin the held ol heat transter, environ-

L A I

theory Forenample. Peraand Gebhart {97 showed by
mtegrating myvisad cases ol the O Sommerfelt type
cqiation that the assumed 2-dim plume base flow s
woss stable for the assmmietrie maode than tor the
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symmetricone. A thorough study of buoyancy effect on
hydrodynamic stability in the vertical round jet has
been conducted by Mollendorf [10] who found that
buoyancy strongly affects the stability of jets.

In the discussion of eaisting information on
transition. the adopted theoretical view is rooted in the
theory of hydrodynamic stability. This point of view
consists of recognizing the existence of external
disturbances of many wavelengths which, when
superimposed on the laminar flow of interest, might
render the flow unstable, thus trigzering turbulence.
Thesame comment applies to the existing experimentat
work on transition: this time the disturbances are
introduced into the flow externally. for example, by
using 4 loudspeaker. Thus. as we look back at the
important advances made in this field of transition
research. it is important to keep in mind that this
research is not about flows alone. but about the
response of certain flows to certain disturbances.

From the outset. it must be said that the point of view
which stimulated the present study differs somewhat
from the classical hydrodynamic stability approach.
The difference lies in the fact that in this study
‘transition’ is viewed as an intrinsic property of the flow
alone, i.c. a property which is not related to the nature
or questionable presence of an external disturbance. It
is shown in the next section that this intrinsic property
stems from hydrodynamic stability results which have
been known for one hundred years. However, it is
apparent that the significance of these results vis-a-vis
transition has not been emphasized until now.

2. THE MINIMUM WAVELENGTH FOR INVISCID FLOW
INSTABILITY : TIME CRITERION FOR TRANSITION

The type of classical stability results which
stimulated the present study is exhibited in Table 1. Ina
1880 paper. Rayleigh [11]showed thataninviscid jet of
triangular profile is unstable to disturbances whose
wavelengths exceed a certain muliiple of the jet
thickness D. Rayleigh did not calculate explicitly the
minimum wavelength of ‘neutral’ stability: his
discussion focused primarily on another. longer
wavelength ( = 2} D) for which an assumed disturbance
exhibits the highest amplification rate([11], p. 65). The
minimum wavelength for instability. 4, which results
from Rayleigh's jet analysis s listed inrow(a)of Table 1.

Similar results have been known from stability
studies involving other basic flows. For example,
Rayleigh considered also the [ree shear flow profile (b}
and found instability for wavelengths greater than "D’
([11]. p. 63). Thus, for several velocity profiles of the
base flow. the minimum wavclength for inviscid
instability always scales with the transy ersal dimension
of the flow. Asshown in row(c)of Table 1. this scaling is
consistent with another classical result. numels. the
instability of a plane of velocity discontinuity to anv
wavelength [ 127 In this case. the minimum wavelength
1s zero,ie. ol thesame order as the shear Las er thickness
The proportionality /. ~ Disalsoencountered in the

nun

Tabie 1. Mimmum wavelength for instability m inviscid flow
after refs. [ 12 14y

stability analysis of radially symmetric flows, for
example, round jets [ 13] and annual shear layers [14].

The object of this study is the transition to turbulence
in a buovant plume. This flow is represented
approximately by profile (a) in Table 1. The theoretical
basis of the present researchis the idea thatthe £, ~ D
scaling discussed in the preceding paragraphs is an
intrinsic property of the inviscid flow, and that this
property is responsible for transition. The mission of
the experimental work outlined later in this paper is to
verify the validity of this theoretical viewpoint. Below.a
simple scaling argument is offered as a basis for the
transition phenomenon, and as an analytical result to
be verified by experiment.

Each longitudinal length scale ~(2 4., and the
plume velocity U define a new time scale,

/.
t~ ﬁ (”
This is the period in which the stream will fluctuate
relative to the still environment. Note that U/2 is the
plume mean velocity which. from symmetry consider-
ations, represents the order of magnitude of the velocity
with which the / wave rises. The same flow is unstable to
an infimity of wavelengths 2 > 2 [11], hence, the
same flow can fluctuate with an infinity of periods
[ 21, ~ Z—'T:: ("’
However, since 4, is proportional to D (Table I), the
minimum fluctuation period I, is proportional to D
also. The proportionality .. ~ D is shown as a
straightlineon Fig. {. where D is plotted on the ordinate
because in natural convection the plume becomes
thicker with altitude. For any inviscid stream of
thickness D. fluctuations with a period shorter than ¢
are stable.

The issue of whether the stream (L. D) wall become
unstable s deaided by examining the ‘inviscidity” of the
Now Inviscidity or riserdinv s a low propertyv, not o Hud
property. If the stream tends to fluctuate (wave), then
plume tud will tend to colhide with the stagnant
ambient intermuttently. at time intersais ¢ > ¢, The
plumestream remans iny iserdifduring each interval (it
s not overcome by viscous eflects. res it does not learn
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F1G. 1. Theinternal competition between the minimum period
for inviscid instability (f,,,,) and the viscous communication
time (t,).

by viscous diffusion of the presence of a restraining
ambient. The characteristic time of viscous penetration
(t,) from the plume-ambient interface to the plume
centerline (over a distance of order D.2) is given by the
classical solution to Stokes’ first problem [15]

D2
1, 3
2Ave,)' 2 )
in other words,
b (4)
b~ —.
Y16y

Thus, at any level (height) in its development, no plume
will remain inviscid forever. Figure 1 shows that if the
fluctuation time exceeds the viscous penetrationtime,,
the plume will remain laminar because its ambient will
successfully continue to restrain it viscously.

The inviscid instability predicted by so many
hydrodynamic stability studies (Table 1) is therefore
possible only if 1, exceeds t,;,. In Fig. 1. this condition
corresponds to the intersection of the r,,,, ~ D line with
the t, ~ D? parabola,

~1,. (5)

‘mln

The phenomenon of transition to non-laminar plume
flow appears to be governed by the time criterion

oN) =1 (6)
where
)
N = Lol I L ()
[mm (IH“ l)’

Notingthat/,,, Disaconstant(Table 11 the OIN) = |

ain

criterion s equivilent to stating that at transition the
stream (local) Reynolds number DU v s a certain
(critical) constant considerably greater than umity.
Thus. approumating #,, = 17140 from Tabie 1. the

transition criterion (6) hecomes
DU

v

\
A
d

(&)

lor transition to non-laminar low

The obect of the following experimental study s to
test the validity of the 1, ~ 1, scaling. as mechanism
for transition in plume flow. [tis worth noting from the
outset that the theoretical time criterton is already
compatible with two carlier conclusions regarding
transition

(1) Experimentally. it is 4 universal conclusion that
transition s assoctated with a characteristic Reynolds
constant considerably greater than unity.

(2) Theoretically. the saume transition criterion is

recommended by the buckling theory of inviscid jets
[16]. where » Zoun is replaced by the huckling wavelength
of the stream, 2, = (= 21D = 1.57D.

An important distinction must be made. however.
between the above theoretical criterion [equations (6)-
(81] und the universally accepted fact that the transition
is characterized by DU 'v = constant. To begin with,
the notion of a "critical’ Reynolds number of transition
is of purely empirical origin. On the theoretical side, the
linearized (smali-disturbance) equations of hvdro-
dynamic stability theory can casily be subjected to scale
analysis to show that the Revnolds number isindeed an
important dimensionless parameter: comparing the
Revnolds number with unity (one), we can say whether
ot not the viscous terms can be neglected in the stability
analysis. Note. however. that this scaling argurn.ent is
not about ‘transition’, rather, it is about the simpli-
fication of stability analysis. Also on the theoretical
side, the Reynolds number appears in the solution to
the complete Orr-Sommerteld equation: however,
unlike in criterion (8), the stability-derived transition
Reynolds number is not a constant. tIt is a function of
the wavelength of each postulated disturbance.)

In view of this discussion. the time criterion {6)48)
scems to provide for the lirst time a hyvdrodyvnamic
stability scaling basis for “the Revnolds number = a
constant considerably greater than unity™ as transition
criterion. The experimental observations summarized
later in Section 6 show that at transition the order of
UD vis 10°,inagreement with the time criterion {6)~(8).

3. EXPERIMENTAL APPARATUS AND PROCEDURE

The experiments focused on a controlled version of
the cigarette smoke phenomenon with which we are all
familiar. Asshownin Fig. 2 the apparatusconsisted of a
man-size. artight, Plexiglas enclosure which was
needed to isolate the experiments from ambient wir
currents present in the whoratory Two adjacent side-
willsand the ropand bottom walls of the chamber were
constructed of wood The remaining two adjacent side
walls were made of Plexiglas i order to permat the
Iighting and viewine of the smoke plume

An vsymmetsic e plume was generited above a
smal! heat source puced i the center ol the boy,
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approximately 45 cm from the bottom. The heat source
was constructed in the form of a nichrome resistance
coil, as shown in Fig. 2. Electric power in the 0-50 W
range was measured and dissipated in the coil : most of
this energy was released into the buoyant air plume.
(The estimated radiation heat loss was less than 6°; at
22 W and less than 20°; at 55 W)

Cigarette smoke was generated in an external device
constructed after a design described by Bradshaw [17].
The smoke was released directly beneath the nichrome
coil very slowly so that it did not aflect the air plume.
This simple flow visualization technique worked very
well, and the plume shape visualized by the smoke trace
was photographed.

The experiments were designed to test the validity of
the ¢, ~ ¢, scaling during transition. For a certain
(reference) power dissipated in the coil. @y, the plume
shape was photographed 3-6 times. The photographs
showed statistically the existence of a characteristic
height x, and wavelength ., for the beginning of
transition (Fig. 2). The power setting Q was changed
during the course of experiments and these changes
reflected in the measured x and i. The object of the
experiment was to discover the dimensionless functions

X
— = function (g) 9)
Xp Qo

;

’Lﬁ = function (QQ;)

The experimental findings were then compared with
the theoretical functions recommended by thet, ~ ¢,
scahing. The theoretical functions x x, and 2 2, can be
obtained by recalling that the diameter and velocity of i

(m

smoke out

e

and Aprian Brias

resistance ( heat source }

)i

[© -

cigarette

Qs an
- # ——

qenerator

smoke

0 10

20 cm
] ]

F1G. 2. Schematic of the experimental apparatus.

laminar plume above a point heat source scale as [ 18]

-1 4
D~Q-lﬁ4xl Z(:(:}_ﬁ) s “”

vk

o1

At transition we expect £ ~ D and ¢, ~ ¢, [or DU v
~ constant. equation (8)]. hence, the theoretical
functions to be tested are

(12)

-12
i=<—Q—> , (13)
Xo Qo
i (0
~={= (14)
20 (Qo/

Note that the scaling represented by equations (11) and
{12} is valid for Prandtl numbers of O(1) or greater.

4. RESULTS

In the first series of observations the plume was
photographed in the absence of any external noise
which might act as a trigger for transition. The measured
transition heights and wavelengths are shownin Fig. 3:
both xand / decrease as the encrgy content of the plume
Q increascs. The variation of 4 4, vs @ Q,, parallels the
theoretical curve. equation (14) but the measured
transition heights are consistently greater than the
theoretical levels. Comparing this first series of
observations with the theoretical expectations [equa-
tions (13} and 1 14)], we conclude that in the absence of
external triggers the transition wavelength scales with
the plume diameter, however. the transition is delayed

: \":‘,-':‘- ‘:x."".::"-:;ﬂ‘;f o .y:;‘.\':’ 4 ."1 ‘-}..:'. w
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Equations (13'are =)

L A

T T

A X
—_—
A, X

FiG. 3. The transition height and the wavelength as a function
of heat input, in the absence of external noise. O, x:x,,
transition height. A, 4 4,, wavelength.

and occurs further downstream from the theoretical
level.

Considerably more conclusive results were obtained
by photographing the plume shapes immediately after
tapping the enclosure once, with a finger. This sort of
noise served to introduce disturbances of many
(unspecified) wavelengths and amplitudes into the air
plume flow. Figure 4 shows the measured variation of
~lig and x;x, with Q/Q, : the agreement with theory is
very good in a relatively wide range of power settings
Q'Q,. It appears that the stream has the natural ability
to filter [19] out of the disturbance spectrum the
natural wavelength of transition. The measurements
indicate that the natural wavelength scales with the
plume diameter (because i ~ Q™ '?). These results
validate the theoretical basis for adopting ¢, ~ t, as
transition criterion (Section 2).

The repeatability of the above observations is
demonstrated by the sequence of photographs
presented as Figs. 5(a)-(c). These three photographs
belong to the same plume, as the plume strength Q was
held constant(Q = 31.1 W). The transition wavelength
and height are recorded instantly by means of the
vertical scale mounted next to the plume, at the same
distance from the camera [note that Figs. S(al-c) were
taken at different times. using different focusing
lengths |. The photographs show clearly that. given a
plume, the transition to non-luminar flow s
characterized by a characteristic wavelength 2 and a
characteristic height x.

The relationship hetween 4. x and @ at transition
(Fig. 4his illustrated in Figs. stadand (b). From Fie. 6a)
to Fig. 6(b) the source strength @ increases by almost a
factor of 2 correspondingly both 2 and x decrease by a

SN
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Fi1G. 4. The transition height and wavelength as a function of

heatinput. The enclosure wall was tapped by a finger. . x. xo.

transition height. A, / 4,, wavelength. Qo = 55 W, x, = 0.25m.
/o =004 m.

fuctor of the order of 1/,/2 predicted theoretically.
Again, transition is characterized by a well-defined
‘meandering’ shape with a unique wavelength and at a
unique height.

An important aspect of the plume shape during
transition is its two-dimensionality. We investigated
this aspect by conducting a separate series of
experiments in which the plume was photographed
simultaneously from two angles, from the front and
from the side. The side-view was visible in a tall mirror
placed vertically near the plume, at a 45° angle with
respect to the camera-plume direction. The mirror view
appears on the LHS of each of the photographs shown
in Figs. 7(a}{c).

By tapping the side of the box once, we had
absolutely no control on the plane in which the plume
would choose to meander during transition. Thus, we
had to take many photographs in order to come across
afew cases where the plane of deformation happened to
be nearly perpendicular to the camera-plume
direction. Two such cases are exhibited in Figs. 7(a)and
(b): plume deformation during transition is clearly in
one plane. Figure 7(c) shows one of the many cases in
which the plane of deformation did not coincide with
either the camera-piume direction or with the direction
perpendicular to the camera-plume line: regardless of
the misalignment. Fig. 7(c) shows that the elbows of the
sinusoidal shape arce all in the same plane.

The 2-dim.. planar, character of the plume
deformation during transition [Figs. 7(a)-(c)] is an
important conclusion: it contradicts the hydro-
dynamic stability assumprion [13] that the initial
deformation (disturbance) in free jet flow s hehical
{3-dim.).
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SCTRANSITION IN A HARMONCALLY-FORCED PLEME

The ~eries of experiments described in the preceding
section vielded vonvinuing evidence that the tranwition
phenomenon s the result of the scale properties
discussed in Secuon 20 These properiies were studied
further i anotherseries ofenpenments where, unhhe i
Section 4. the tocation, intensity and frequency of the
‘tngger” disturbance were controlled. The disturbance
wus generated by aloudspeaker suspended at a certain
hewght, H. rext o the plume (big 2y The lace of the
loudspeaner was covered by a wooden pancel with a
Imm < 200 mm honizontal sht cut into it Thus, we were
able to hurmonicully force oniy a narrow section of the
rising plume. at a height determined by the position of
the loudspeaker. The intensity of the harmonic forcing
trelative to a reference intensity) was monitored by
measuring the power needed to drive the loudspeaker.

The experiments were conducted in 4 manner simalar
to what led to the observations summarized in Fig. 4.
For a fixed heat source strength Q. the plume was
disturbed shakeny at certain frequencies f of the same
amplitude (the loudspeaker frequency varied. however,
the maximum travel of its cone was held constant. It
was observed that the transition height x depended
strongly on the frequency of harmonic excitatior. £ 1t

was found that there exists a characteristic frequency

such that the trapsition takes place at a minimum
height: frequencies higher and lower than this
characteristic value triggered transition at higher
altitudes. These ‘resonance’ characteristics have heen
studied extensively (visually and photographicaily
[20]) and are amply documented in Figs. Ra)-(f). In
Figs. 8{a)-(c) the loudspeaker was held atafevel 4.5ecm
above the heat source, while in Figs. 8(di-() the
loudspeaker height was 13 cm.

The minimum transition height and the correspond-
ing wavelength were found to decrease with the
increasing heat source strength Q. These observations
are summarized in Fres 9 they are nearly denucal to
the results of Fig. 4 obtained by tapping the enclosure
ance with a finger. Thus. the plume resonates, henceas
deformed most effectively when 1t is harmonically
farced at its natural {requency. with a wavelength that
scales with the plume thickness at the transition height.

The acoustic excitation provided by the loudspeaker
introduces two more variables in the experiment, the
loudspeaker height and the excitation amplitude. In
Figs. Saj-tf) we show the effect of disturbance
amplitude Increasing the disturbance has the effect of
precipitating the transition. i.c. the cffect of decreasing
the transition herght. Rarsing the loudspeaker from
S4emoto 12 emabove the plume orngin, has the efect
of placing the trunsttion further downstream

6. FRANSIHION REYNOTDS N MBER
GREAMIER THEAN U NDEY

A summary toothe preceding senies of obser-
vattons, B Toshows the actual hineas dimensions ol

[S28 Stnaro Rstcgy and Aprias Bassas
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Fig. 8L Q =413 W.H = 0045 m. D 71 4 2y

the charactenistic waselength and transitton heightithe
same measurements re listed in Tables 2and 3 1o
evident thatat transition the height vis proportionad (o
the charactenstic waselength 20 fact,

v o~ Qg (R

ivanorder-of-magmitude Gt for the data plottedin by
10 The measured proportionality between vand »
transition v anuapated correctly By othe scahng
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argument presented in the beginning of this paper [see
equations (13) and (1]

In addition. note that the coetlicient in equation (1 5
is a number greater than umity. This finding vahdates
the time cniterion of transiions, equation (R8). which
translated into a transibon Revnolds number con-
siderably greater than umity. For example, by using the
D and U scales of the plume [equations i1 and 1121].
the transition height vis chmunated from equation (15

R oo .
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FIG. 81N Q=85SW. H=013m. O 3 A 20 = 11

F1G. 8. Effect of disturbance frequency and amplitude on the
resonance charactenstics of the plume. The voltage | repre-
sents the amplitude of the input signal to the loudspeaker.

to obtain

DU ’
~ 10 t1e)
' D

According to Table 1.4 D can onls he o' the order of 2
or greater. hence, the transion Revoolds number
DU v must be a constunt conaiderably greater than
umty un the range 10 1o Thus, the present
cxperimental observations support quahtatively and
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F1G. 9. The transition height and wavelength as a function of

heat input. in air plumes cxcited harmonically by 2
loudspeaker. O x x, transition height: A £ i, wavelength:
Qo =2l W:.x,=035m: 4, = 006 m.

quantitatively the transition mechanism envisioned in
Sections 2 and 3 and in Fig. I.

It is worth noting that the local Reynolds number
transition criterion OtN) = 1 or DU 'v = 0110 stated
inequations (6) and (8} and verified above, can be easily
translated into the Rayleigh or Grashol number
language used in natural convection. In fluids with
Pr > O(1) the velocity boundary layer thickness scales
asx Pr' 2 Ra™'* and the vertical velocity as(xz x)Ra* 2,
where Ra is the Rayleigh number gfx2Q(xvk)
Therefore DU v = 0(10%) means that at transition the
Ravleigh numberis Ra = O(10%Pr*). For theair plumes

=

- .-

-

-
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-
T b 2
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. L el

N

Fici. 10 The measured characternsiic wavelength and tran-

sitton height. 7 data from Table 2.7 data from Table ?

Table 2 Transinon hesht and wavelength
measuramnents plotied in g 4
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* Reterence power setting

considered i our study this predictien reduces to
Gr = 0010%), which the commonly observed range of
transition Gruashof numbers tnote that Gr = Ra Pr).

7. CONCLUSIONS

This paper descrnibed a fundamental study of the
phenomenon ol transition to turbulence in natural
convection plume flow. The experimental part of the
study focused on a controlled version of the “cigarette
smoke” plume flow. The experiment demonstrated
that:

(1) at transition. the plume assumes a sinusoidal
{meandering) shape of churacteristic wavelength. and
at a characteristic height above the plume origin [Figs.
Star-(c)]:

(2) the transition wavelength scales with the local
plume diameter (Figs. 3. 4 and 9):

(3) the transitional meandering shape is 2-dim..i.e.in
one plane {Figs. Za)-(c)]:

(4} if the transition is triggered by "noise’. thenitisa
plume property to ‘filter’ out of the noise the
characteristic transition wavelength which is propor-
tional to the plume diameter at the transition height
(Figs. 3 and 4):

13) if the transition is triggered by single-frequency
forcing. then itis a property of the plume to ‘resonate’.
i.e. to deform most when disturbed with u wavelength
which scales with the plume diameter at transition
height (Fig. 9.

These experimental conclusions support strongly
the theoretical argument presented in Section 2.
According to this argument. the phenomenon of

Table 3. Transition height and wavelength measurements
plotted in Fig. 9

QW) v imi 7 tm) Him) f(Hn
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transition is:

{a) an intrinsic property of the tlow:

(b) the result of the internal competition among two
characteristic time scales of the stream, the minimum
fluctuation period 1,,,,,, and the viscous penetration time
t,:

(cycharacterized by a unique meandering wavelength
which is always proportional to the local stream
thickness.

The transition mechanism proposed in Section 2
evolved from a review of classical hydrodynamic
stabulity results (Table 1) and led to the low propertics
tscaling) embodied in the ume criterion t,,, ~t,
[equations (6) and (7)]. The same scales and time
criterion have been brought to light earlier by the
buckling theory of inviscid flow [16]. It was shown
recently [21] that the buckling time criterion Ng = O(1)
also predicts correctly the transition in frce jet flow,
shear flow and wake flow, as well as a series of turbuient
boundary layer features such as the bursting frequency
and the viscous sublayer thickness. Thus, the present
study reveals an important relationship (equivalence)
between stability theory and buckling theory with
regard to explaining transition.
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MECANISME DE LA TRANSITION VERS LA TURBULENCE
DANS UN ECOULEMENT DE PANACHE

Résume - On ctudie théoriquement et expérimentalement le mécanisme fondamental responsable de la
transition dans la convection naturelle d'un panache. Théoriquement, la transition apparait quand le temps de
penétration visqueuse normale au panache devient comparabile i la période de temps minimale de fluctuation
du panache comme un écoulement instable non visqueux. On suppose aussi qu’a la transition, la longueur
d’onde du panache est en proportion du diamétre local du panache. La partie expérimentale de I"¢tude est
focalisée sur la transition dans un panache axisymétrique d'air au-dessus d'une source ponctuelle. Une
visualisation par fumée de la forme du panache 4 la transition conduit a des observations extensives qui
soutiennent fortement le mécanisme proposé dans la theorie. Le sillage de transition serpente dans un plan
(bidimensionneliement) et avec une longueur d'onde qui est a I'échelle du diamétre du panache. §'il est excite
extéricurement par des longueurs d'onde, le panache a la propnété de sélectionner la longueur d'onde
proposée théoriquement. On discute I'équivalence entre le mécanisme de transition proposeé et celui de la
theorie du flambement.
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Buckling of a turbulent jet surrounded by a highly fiexible duct

Ren Anderson and Adrian Bejan

Department of Mechanical Engineering, University of Colorado, Boulder. Colorado 80309

{Received 24 February 1983; accepted 18 July 1983)

An experimental and theoretical study of the static buckling of a downward flowing stream
surrounded by a highly flexible duct is reported. It is shown analytically that the stream buckles
into a meandering shape that depends strongly on the flow velocity in the duct. The amplitude of
the buckled shape is found to be governed by the magnitude of the transverse force created by
nonzero curvature at the free end of the duct. Experimental measurements confirm the buckled

shape described analytically.

I. INTRODUCTION

In the course of flow visualization experiments with
turbulent water jets we discovered that vertical jets sur-
rounded by thin rubber ducts naturally buckle into a stable
shape that is a strong function of the flow velocity in the
duct. At small flow rates the buckling of the duct is limited to
regions near its free end. As the flow rate is increased the
buckled portion of the duct also increases, appearing to
*climb” up the duct until its entire length is filled with small-
amplitude standing waves. The equilibrium shape of the
duct is roughly sinusoidal with a wavelength that is inversely
proportional to both flow velocity and distance from the
fixed end of the duct. Three photographs of a buckled duct
containing flowing water are shown in Fig. 1. The flow ve-
locity in these photographs increases from left to right.

Further increases in flow velocity beyond what is
shown in Fig. |1 eventually lead to loss of stability and the
initiation of self-excited vibrations of the duct and enclosed
jet. These vibrations have been the major focus of previous
studies using cantilevered ducts containing flowing fluid.
The phenomenon of static buckling has not received as much
attention as the self-excited vibrations, possibly because of
misunderstandings concerning the conditions under which
buckling develops. For example, Thompson' reports that
cantilevered ducts which are initially straight cannot buckle
under the influence of flowing fluids. He is correct in theory
but not in practice, because real ducts are never perfectly
straight. As shown below, any slight initial curvature of the
duct causes a nonzero transverse force at its free end and
leads to buckling, provided that the flow velocity is large
enough.

Interest in the flow-induced instabilities of ducts con-
veying fluids has been largely motivated by the practical
problems of pipeline and heat exchanger design. Niordsen?
was one of the first to derive the correct form of the equations
of motion. In the course of a study of flow through segment-
ed pipes with flexible joints Benjamin’* confirmed Niord-
sen’s derivation by using Hamilton’s principle. Gregory and
Paidoussis®® and Paidoussis’ extended Benjamin’s analysis
to the case of continuous elastic tubing. Benjamin's study,
like those of Gregory and Paidoussis, is devoted primarily to
stability analyses aimed at determining the onset of self-ex-
cited vibrations. Bishop and Fawzy" observed static buck-
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ling during their experiments with forced oscillations of ver-
tical ducts filled with flowing fluid, but reported their
abservations without attempting to explain them. More re-
cently Lundgren, Sethna, and Bajaj’ observed large-ampli-
tude buckling of a cantilevered duct when they attached an
inclined nozzle to the free end of the duct. They calculated
the static solution for the buckled shape which resulted from
the attachment of the nozzle, and examined the stability of
the static solution. They found that, with the nozzle at-
tached, the orientation of self-excited oscillations was no
longer random but occurred either in the plane of the nozzle
or perpendicular to that plane.

(a)

FIG. 1. Static buckling of a vertical hose with a diameter of 12.7 mm 1a:
V=19m/sec,caf =278 b1 V=315 m/sec,al =101 i1 =4"3m,
sec, af = 0.45
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Our objective in the present study is to focus on the
small-amplitude static buckling which is exhibited by a tur-
bulent jet which is bounded by a highly flexible duct. This is
the *“flow-dominated’ regime of the pipe vibration pheno-
menon studied by earlier investigators. In the analysis pre-
sented below we will include a gravitational tension term not
considered by Lundgren ez al.® in their study of horizontal
ducts. This gravitational term causes the wavelength of the
buckled duct to decrease with increasing distance from the
fixed end of the duct. In addition we will show that, if the
flow through the duct is considered to be inviscid, then the
effective bending stiffness of the duct/jet system is increased
by nonuniform pressure and tension distributions created by
the local curvature of the duct. After deriving the equilibri-
um equation describing the system, we will find perturbation
solutions valid for short, flexibleducts in the limits ¥ 2 = O (¢)
and ¥'? = O(1/¢). We will conclude the paper by comparing
the wavelength predictions made by a perturbation solution
appropriate for long ducts to experimental measurements
derived from photographs such as those shown in Fig. 1.

1. MATHEMATICAL FORMULATION

The basic geometry of the problem considered in this
paper is shown in Fig. 2. A flexible tube of radius 7 and length
L houses a stream of mean velocity ¥ and density p. The
centerline of the flexible duct is described by the curve y(x).
The duct is assumed to undergo small-amplitude, beam-like
deflections with no change in the shape of its cross section.
These deflections are assumed to be small enough so that
secondary flows can be ignored. The fluid mass per unit of
duct length is m,, while the wall mass per unit lengthis m. As
shown in Fig. 2, the average pressure, tension force, shear
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F1G. 2 Forces and moments acting on a duct element.
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force, and bending moment are represented by P T. S, and
M. Finally, in accordance with the notation employed in
membrane stress analysis,'” we write t, s, and s, for wall
thickness, meridional stress, and tangential stress, respec-
tively.

A force balance in the vertical direction (x) yields
{m, + mig dx + (poAd — T)cos 6
+ [T+ dT — A(p, +dp,jlcosl® +dd) =0. 1)

For small amplitudes, cos{d@ ) =cos(@ + d@}=1,and Eq.(1)
can be simplified to the form

my + mig = <L (pot — T, 2)
dx
Integrating Eq. (2) we obtain
(m; + mlglx — L) =peA—T. (3)

The constant of integration in Eq. (3) was evaluated by ap-
plying the free-end condition T=p, =0atx = L.
The fluid velocity in the horizontal (y) direction is

d dy dx dy
a =& ax _ya
dt blxeny dx dt dx “

and the acceleration of the fluid in the horizontal direction is

d? d?
—— t = Vz —— 5
=5 xinl) 4 (5)
Applying Newton's second law of motion and ignoring sec-
ond-order terms, we find

_ds

dy _d ( dy )
2 (ir- =222
dx? dx (T'=poA] dx dx

Substituting for the pressure p, and tension T from Eq. {3},
reduces Eqg. (6) to

2
m.V

(6}

d? d d ds
'"f"’—dxf=z;(‘”’f+’"’g“""7f:)‘a:' @

It is instructive at this point to examine the physical
meaning of each of the terms in Eq. (7). As the fluid moves
through the duct it undergoes centripetal acceleration by
virtue of the fact that it is following a slightly curved path.
The centripetal term on the left-hand side of the equation is
balanced on the right-hand side by gravitationally induced
wall tension and by a transversal shear force. In the limiting
case of zero fluid flow and zero bending stiffness (i.e., zero
shear force), Eq. (7) reduces to the equation describing a
hanging chain. A surprising implication of Eq. {7) is that the
static equilibrium of the duct does not depend on the viscos-
ity of the fluid flowing through the duct. This result is due to
the fact that the tension induced in the duct walls by fric-
tional fluid drag is exactly offset by the pressure force re-
quired to force the fluid through the duct.

The transversal shear force S can be evaluated by re-
quiring rotational equilibrium about the bottom face of the
duct segment shown in Fig. 2.

5 dM
dx '
where M is the total bending moment acting over the duct

Cross section. As shown next, this bending moment is due to
three independent effects: {a) the asymmetric distribution of

(8)
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fluid velocity and pressures; (b) the asymmetric distribution
of tangential stresses in the wall caused by jet flow; and (c) the
ET bending stiffness of the tube, predicted by classical beam
theory. Since in the limit of small-amplitude deflections
these effects are not coupled with one another, each will be
cogsidered separately.

In an inviscid jet with an infinitely large radius of curva-
ture R _ , the velocity and pressure distributions are''

Viw) = V(1 —w/R_), (9)
plwi=p, +pV*w/R . (10)

The “jet” bending moment M, associated with these asym-
metric profiles is''

d3y
" l
dx- ()

M =pV3l,

In Egs. (9) and (10), coordinate w is measured radially from
the jet centerline, away from the centerline of curvature (see
Fig. 2). The symbol I, denotes the area moment of inertia of
the jet cross section (for a round jet, I, = #r*/4).

The membrane stresses induced in the wall by the pres-
sure variation across the duct are shown in the bottom por-
tion of Fig. 2. The horizontal components of these mem-
brane stresses must balance the internal pressure force
acting on the duct wall

s.tdsd@, +s,tdsdf, =pds. (12)
Since

9 _ g, (13)

r
and

95 _ a0, (14)
Eq. {12) becomes

Sm 5. P

—_——t—=, 15

r R, 1)

The relation between R, and R is shown in Fig. 3. The hoop
stress, s,,, can be found by integrating the pressure across a
section of the duct as is shown in Fig. 3,

(R, +whs,,tcosd = J%[po + ( 2
0

;:wl )](R=c + w'dw'.
(16)

Performing this integral and recognizing that

FIG. 3. Force balance for calculating the hoop stress s, .
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| 2
-} =12 2 )_., 7
(+Rw) ! R +(R ) 7

and

w, = rcos ¢, (18)
yields

Sm =(r/t)[po+ (rcos 6 /2R JpV* — po)]. (19)

The tangential stress distribution s,, which is needed for cal-
culating the bending moment, follows immediately from
Eqgs. (15) and (10),

s, =(r/2t)pV? +p)l +rcosd /R ). {20
The “membrane” contribution to bending moment, M, is
therefore

M, = Zf s,4r cos & dé, 21
(1]
21 bl 2 2
M, ==2(pV?+pl=UplpV* “"Po)d—{' (22)
R dx

£

So far, the first two contributions to the bending mo-
ment, Egs. {11) and (22) are due to the jet flow through the
highly flexible envelope. The third and final contribution to
the bending moment is a well-known result of classical beam
theory. The bending moment due to the bending stiffness of
the annular duct is'?

2
M, = El%. (23)

where [ = 7rt.

The total bending moment is obtained by adding Eqgs.
{11}, {22), and (23)
d?
dx*
Combining (24}, (8), and (7), we obtain the equilibrium condi-
tion

(24)

M = (EI + I(3pV?* + 2p,)]

dYy
dx*

2
(EI + Ij3pV* +2pg)) =% 4+ m,V? _:x{

+2 ((m,—f—m)g(x—L):—':):O. (25)

dx
This result indicates that the effective bending stiffness of the
duct is increased by nonsymmetric pressure and tension dis-
tributions created by the slight local curvature of the duct.

The boundary conditions which much be satisfied at the
upper (fixed) and lower (free) ends of the duct are

y=0 atx=0, (26}
DY _0o atx=0 (27)
dx

and
4y o, (28)
dx-
. d?
(ET +3pV3) ==L =m VS atx=L. (29)
X

Equations {26)—{28) are the standard end conditions applied
to the fixed and free ends of a simple cantilever and require
no further comment. Equation 129) is unique to the problem

R Anderson and A Bejan 3195
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For turbulent flow the resistance coefficient is small and ap-
proximately constant

N
;_ - w = 0(€). (41)
I‘ g
- The nondimensional parameters appearing in (34} are
oy
S 1 (m,+m)( gD )( El . )V!
Fy a=—|—+— (&5 —+3) ., @
S : 4 m, Vi pVi,
: _ 4L /D @3
Y (EL/pV: I, + 3)'¢
‘s _ wl /D (4]
El/pVi,+3

FI1G. 4. Origin of the transverse force Fg. The magnitude of § has been

greatly exaggerated. Each of these parameters depends upon F?, reflecting the

strong influence of fluid velocity shown in Fig. 1.
The final character of the solution to (32)-{36) depends

of a highly flexible duct conveying fluid, and incorporates to a large degree upon the sign of the function

the important physical observation that no real duct is ever R
perfectly straight. The weight of the fluid flowing through =1+afx—1), (45)
the duct will tend to straighten it except for a short regionof  which appears in the second term of Eq. (34). Function z

unknown length ds near its free end {Fig. 4). This resultsina changes sign when X passes through the “turning point”
small transverse force Fg due to the reaction force of the 2y =1 — 1/aB (46)
TP = 1 7 .

fluid as it leaves the duct: )
The location of this point defines the transition between the

—_ 2 ¢3 —~ 2 ”

Fs = m V" sinlds/Ro)=m, V> ds(y5). - .. (30) buckled and unbuckled portion of the duct [Fig. 1(a)), and is
This reaction force is expressed in (29) in terms of the un-  positive and nonzero provided that @8 > 1. This can be seen
known constant explicitly by considering the velocity-dependent behavior of

S =dsl), - (31)  ashort, flexible duct with
It is shown below that the sole function of S is to determine L/D=0(}1), (47)
the amplitude of the buckled duct. EI (length/iime)*

Dividing (25)by EI + 3p¥ *I,and introducing the non- oV, = ( V: )' (48)
dimensional variables 0 2

&b _ ( {length/time) ) (49)

y=y/L, (32) v v?

*=x/L, (33) (my; 4+ m)/m, =0(1). {50)

reduces the equilibrium equation and boundary conditions =~ Conditions {48) and (49) are intended to simulate experimen-
to the form tal conditions when the physical properties of the duct are
held constant while the fluid velocity is varied. Under these

(1+n1~ X)] conditions, a, 8, and y become
EI 12 ‘
.2 (p2 p ay\ _ a—O[ (———+3) ] (1 !
-2 (/3 [l+aﬂ(x—l)]7£-)—0, (34 AT :
5=0 ati=0, (35) b=OL4/EL/pV7]o + 3], (2
——=0 atx=0, (36) : . .
d3 The velocity dependence of these parameters is summarized
and in Table L.
an To demonstrate the general behavior of the solution we !
47 o, (37)  will first consider the small velocity limit p¥ 2o/ EI = O e). -
dz? By neglecting 3 * and ¥, integrating once and introducing the ‘
3 ;
d-y —B°S ati=1. (38) change of variables I
dz?
The centerline pressure in the duct, p,, has been ex- TABLE 1. Velocity dependence of a, 5. and y for the case of a short. flexible :
pressed as a linear function of % by relating the pressure duct.
gradient to the dynamic head via a resistance coefficient w: =
pV Iy/El a B v
Fo —( )DV 39) O1e) Ofe ') Oie' ¥ o) -
o oty oth Oie)
Py = 2_[_‘. V31 — ). (40) O{1/e) Ote) o Ote)
2D
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y
3l
w §=—aFE-1), (54)
_‘n‘: dy
. p=— 55
‘ we can transform (34) into the homogeneous Airy equation
9" - 7.
N d y

0, 56
_ X —¢y= (56)
NSy with the general solution '
ey 7 =C, Ai¢) + C, Bi(¢). (57)

(‘l.'tz'm' <:' --\: AR 1."\-’ »-4'{' (R .-x\"

However, application of conditions (36) and (37) produces
the trivial result C, = C, =0 and the conclusion that the
duct will not buckle when the velocity is small.

In the large velocity limit [p ¥ *I,/EI = O (1/€)] we pro-
ceed in a similar manner. Neglecting a and ¥ and introduc-
ing the change of variables

=D

y=— (58)
Eq. (34) becomes

d%¥  pa_ a2

ZZ+BF=BK (), (59)

dz°

K(¥V)=S+31). (60)

This is equivalent to the horizontal problem considered by
Lundgren et al.® and leads to the solution

J=S[cos B —cos 8% — 1)], (61)

and the conclusion that for large velocities the entire length
of the duct is buckled. Note that the unknown parameter S
serves only to determine the amplitude of the solution and
does not influence the buckled shape.

Finally, in the moderate velocity limit [pV %[/
EI = O(1)] we neglect 7, integrate once and introduce the
change of variables

n= — z/a:/:” (62)
dy
. - 7
= (63)

These steps reduce (34) to the form of a nonhomogeneous
Airy equation

dy* __ ._ _KW¥)
an ny o8 (64)
with the solution'?
aB [Gi"(b) + C, Ai"(b) + C, Bi"(b)]
_ 1Gi'(6)Bi(a) — Gi(a)Bi'(5)) (66)
'~ [Ai@)Bi'(b) — Ai'(b)Bila)] '
_ [Gila)Ai'lb) — Gi'(b)Ai(a)] (1)
27 (Ail@)Bi'b) — Ai'lb )Bi(a)] ’
Gi(n) = —Bltn) + id%l Bi(t )dr —- ——f Biir)dr, (68)
= —(l —af)/a*'"’, {69)
= — l/a*". (70)

The functions Ai and Bi are shown in Fig. 5. The solu-
tion (65) will exhibit buckling behavior when 7 is negative
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FIG. 5. Plot of the Airy functions Ai(x) and Biix}. (Taken from Ref. 14, p.
69.)

and exponential behavior when 7 is positive. The transition
between the two forms of behavior is defined by the location
of the turning point expressed in (46).

lll. LONG DUCT EXPERIMENTS

In the previous section we have shown that the qualita-
tive behavior of the solution to (34}38) agrees with the gen-
eral observations described in the introduction. To test this
agreement in quantitative terms we experimented with long
ducts in the fully buckled regime (a8 < 1). After testing sev-
eral different materials, we chose to do our measurements
using surgical drainage tubing made of latex rubber. We
used two different tube sizes: the smaller had an inner diame-
ter of 9.5 mm and a wall thickness of 0.3 mm, while the
corresponding dimensions of the larger size were 12.7 mm
and 0.34 mm. For both sizes, the length of the tube was one
meter. The flexible tube was clamped to an inlet nozzle con-
nected to the building water supply. The Reynolds number
based on duct diameter varied from 10* to 5 X 10*.

Figure 6 shows a schematic drawing of the experimen-
tal apparatus. In order to avoid the secondary effects asso-

F inlet nozzle

loudspeaker [E_

steel | begm

|
|
N
5 ‘
rubber tube

lload ceil
L)

FIG. 6. Schematic of experimertal apparatus
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ciated with bends (elbows) in the piping, the length of the
inlet section was always greater than 50 times the rubber
tube diameter. The inlet section had the same inner diameter
as the rubber tube, and the inlet nozzle was tapered to a knife
edge in order 10 avoid flow separation at the point where the
water leaves the nozzle and enters the rubber tube. The flow
was measured by taking timed volumetric samples of the
water leaving the flexible tube. At each flow setting, the
shape of the buckled tube was recorded photographically
(see Fig. 1).

As argued in Sec. II of this paper, the bending stiffness
of the flexible duct is a pivotal parameter in predicting the
buckled shape of the duct. The bending stiffness of the tubing
material was measured in two ditferent ways. In the first
method, Young's modulus was calculated using a load cell,
by measuring the force required to elongate the tubing by a
given amount. The experimentally measured Young's mo-
dulus was then multiplied by the area moment of inertia
calculated from the physical dimensions of the tubing. This
value was double checked by measuring the fundamental
frequency of a short section of the water-filled tube. The
corresponding value for E was then calculated by using the
formula for a simple cantilever beam. The frequency mea-
surement was accomplished by shaking the tube with an arm
attached to the cone of a loudspeaker (see Fig. 6). The
Young's modulus determined by these methods was found
to be 1.7 X 10° N/m? with the static test giving values 10%-
15% higher than those determined by the dynamic test.

A typical experimental run was started with the tube
hanging limp (collapsed, with elliptical cross section). When
the water was turned on the duct began to buckle from its
free end as described in the introduction. The length of the
buckled portion of the duct increased with increasing flow
velocity until aff reached the value 0.35 for the larger diame-
ter duct (0.43 for the smaller diameter duct) when self-excit-
ed vibrations began near the free end of the duct. The ducts
were rotated end for end during the experiment to test for
systematic error associated with the specific shape of the
duct. The only quantity that was found to vary significantly
was the amplitude of the buckled shape, in agreement with
results (61) and (65).

Thescaling that is appropriate for the ducts used during
the experiment differs from the short ducts considered in the
previous section:

gD/Vi=0\e), (71
El/pV3l, = O(l/¢€), (72)
L/D=0(l/€), {(73)
(m; + m)/m,=0(1), {(74)
a=0(€"?), (75)
B=0("""?, {76)
y=0le). (77)

Neglecting 7, integrating once, and introducing the change
of variables

u=Y _ab_ (78)
dz K(V)
reduces (32) to the form
PLICACSpS (79)

dz

Functions K and z have been previously defined in (60) and
{45). Because we expect a spatially periodic result, we will
seek a solution in terms of an exponential WK B expansion'*

u ~exp( L Za"s,, (z)).
a%s

The functions s, are determined by substituting this expan-
sion into the homogeneous portion of (79)

So= iy,

(80)

(81)
(82)

When expressions (31) and {82) are introduced back into Eq.
(80) we find the WKB solution for the homogeneous egua-
tion to be

U, =zl—l/4 [C, cos( %z’”) +C, sin( ?2;:3/2)]'

sy = —|{lnz

(83)

The corresponding particular solution is found by solving
(79) in the limit @> = O and is

u, =1/z {84)
Combining (83) and (84), applying conditions (35/—(38) and
transforming back to the nondimensional physical coordi-
nate £, leads to the final form

PO,

i mm s e AaaA e e e ———

2l 4o lec{ ) e 3]
L ="_l_ 4+ —|C cos|] =7 C,sin| — 2%}, 85 »

t aDl2 +z”‘ ' 3a +& la (83) o2

5 1 2 (2 =3

o=+ (o= )[ereo( 5 ) + s )]} (%6) %

C. = {1/C>'*{sin(2/3a)/4 ~ cos(2/3a)/a] — sin(2C*'?/3a) (87) ::t‘.i
[cos(2/3a)(C "2 — i)/a + sin(2/3a)(C*'* ~ 11/4] o

C. = cos(2C V'¥/3a) — (1/C ¥4 [sin|2/3a)/a + cosi2/3a)/4] (88) é
[cos(2/3a)C*2 = 1)/a + sin(2/3a)C ** = 1)/4] ' "
C=1-ap. (89) I“j:
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Equation (85) was integrated numerically fromx =0 to
% = 1. During the integration the distance between succes-
sive crossings of an imaginary line extending from the origin
to the free end of the duct was recorded for comparison with
measurements taken from photographs of buckled ducts.
We define the distance between crossings to be 4, and show
the results of this comparison in Figs. 7-9. The experimental
measurements are denoted by + ’s and the numerical results
derived from (85) are denoted by O’s. The agreement is good,
both in terms of the location of the crossings and the magni-
tude of A,. The total number of crossings measured from
photographs agree with those predicted analytically, except
for the case shown in Fig. 9. It is felt that this is a result of our
inability to interpret the photographs accurately near the
free end of the duct.

IV. CONCLUSIONS

We have shown analytically that static buckling of a
highly flexible duct filled with flowing fluid is a result of the
shear force created by the unavoidable initial curvature of
the duct. We found that this shear force governs the ampli-

hd
-
&
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P o
No/O | I PO ore o
. r
t
5 =
0 M L
o] 0.5 , 1.0

| S
FIG. 8. Plot of 4, when ¥ = 4.43 m/sec. @ = 0.008, 8 = 62.0. All other

parameters have the same value as Fig. 7. { + = expenmental value,
O = theoretical value.)
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tude of the buckled duct, but does rot affect its general
shape. In addition, we found that a vertical duct exhibits a
transition between sinuous and exponential deformation.
The location of this transition was found to depend upon the
velocity of the fluid stream. We successfully tested our anal-
ysis by measuring the buckling wavelength of a long duct
and comparing it with the predicted values.

It is important to note that the buckling property of a
bounded jet, which has been explored in this paper, is in
principle independent of the bending stiffness of the duct
which surrounds the jet, because of the inherent jet bending
stiffness defined by Eq. (11). In the present paper we have
examined the general case where the duct walls have finite
bending stiffness. However, a similar buckling phenomenon
is observed in jets bounded by ducts with zero bending stiff-
ness, for example, in fast capillary jets'’ and in inviscid jets
that discharge freely into an infinite reservoir.'® In the latter
case, the hydrodynamic stability analysis demonstrates that
the jet moves as if it were bounded by the annular shear layer
which surrounds it, and selects a longitudinal wavelength
that is a certain multiple of the jet diameter.'® This ts consis-
tent with the buckling wavelength produced by the E/—0
limit of the present analysis.'' A compilation of photographs
of buckling natural flows is presented in Ref. 17.

From the point of view of experimental methods in tur-
bulence research, the present flexible-duct experiments iilus-
trate an effective way to visualize the natural tendency of any
turbulent duct flow to engage in large-scale, organized, mo-
tion. As the beam stiffness of the hose decreases, the hose
wall molds itself to the large-scale sinuous path preferred by
the turbulent jet, and the hose shape becomes a record of the
large-scale structure of turbulent jet low. As pointed out in
the Introduction, the search for an effective jet flow visual-
ization method is what led to the definition of the problem
addressed in this paper.
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Shigeo Kimura

Column

Adrian Bejan

Cepartment ¢f Mechanical Engineering,
University ot Ccloraco.
Boulder. Colo. 80309

The Buciling of a Vertical Liquid

This paper documents the sinuous flow of u vertical water column whi b .mpiroes
on a horizontal surface. It is shown experimentally that the solud obsiucie huciivs
the column into a plane sinuous (static) shape whose wavelenseth scales with the
local column diameter.

The measured ratio (buckling wuavelength)  (column

diameter) is of order =/2, in agreement with the buckling theory of inviscid flow.

1 Introduction

The object of this paper is to report a series of experimental
observations concerning the buckling of a vertical water
column, which is a phenomenon commonly observed by
placing a flat obstacle under a faucet. The observations reveal
the existence of an interesting scaling law, namely, the
proportionality between the diameter of the water column and
its longitudinal buckling wavelength.

The flow of vertical liquid columns is a topic which draws
its importance from its many engineering applications, for
example, gas-to-liquid chemical processing and condensation
heat transfer in heat exchanger design. As shown below, this
topic has been studied extensivelv, however, with only one
exception, all previous studies have been focused on the free-
fall of the liquid column: in the free-fall regime the column
remains axisymmetric. In the present study we consider a
vertical column which is interrupted by an obstacle and, as a
result, assumes a sinuous (nonaxisymmetric) shape.

The two-dimensional inviscid flow issuing from a very large
vessel through an aperture in a solid wall is one of the classical
problems in hydrodynamics, pioneered by Kirchhoff [1] and
Ravleigh (see Lamb {2} Milne-Thomson {3} considered the
same phenomenon under the effect of gravity. Since, under
gravity, the “‘infinite height of the vessel leads to an *‘infinite
hydrostatic pressure’” paradox, Conway [4] redid the problem
by inserting a horizontal lid above the wall with the orifice.
He was able to obtain the smooth draw-down shape of the
column, employing the free surface treatment proposed by
Milne-Thomson {3].

Among the numerous theoretical studies reported in the
literature, the work of Scriven and Pigford [5] appears to be
the first in which the liquid flow was analyzed based on a
boundary layer-type approximation. Lienhard [6] chose a
similar approach and included also the effects of gravity and
surface tension. Matovich and Pearson {7] formulated a one-
dimensional flow model and were able to obtain several
closed-form solutions for symmetric column shapes in various
parametric domains. A more rigorous tormulation was
presented by Duda and Vrentas [3]. A one-dimensional
Casserat-type theory was developed by Green {9 and Bogy
[10]. The work of Boey is concerned primarily with the
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condition of droplet tormation at the lower cnd of a free-
falling column. The subject of axisvmmetric break-up and
droplet formation has been studied extensively over the past
100 years; the core of this work was reviewed recently in the
context of Hydrodynamic Stability Theory (Drazin and Reid
{11p.

To our knowledge, Lienhard [12] is the only author to have
analyzed the sinuous shape of a column impinging on an
obstacle. Lienhard viewed the phenomenon as capiilary waves
which originate at the solid plane and travel upward at the
same speed as the water velocity. It is interesting 1o note that
the buckled shape of vertical water columns is sometimes
accidentally photographed and published by researchers
investigating an unrelated phenomenon (see, for example,
Figs. 1(b) and I(¢) in Winston and Martin {13]).

2 Experiment

We carried out a series of controlled experiments in which
we photographed the buckled shape of the liquid column. The
purpose of this photographic record is to document the
relationship between the geometry of the buckled column and
physical parameters of the flow (velocity, column diamcter.
column height).

The experimental setup is shown schematically in Fig. 1.
The apparatus consists of three basic components, the water
supply reservoir, the nozzle, and the round tabie which in-
terferes with the free-fall of the water column. The water
reservoir is a cylindrical vessel (14 ¢m diameter, 60 cm height)
which supplies water at a known flowrate to the nozzle sec-
tion. The flowrate is known with 5 percent accuracy from
preliminary calibration experiments which revealed the
relationship between flowrate and reservoir water level. The
reservoir and the nozzle are connected through a 1 m long
vinyl tube with an inside diameter of 0.64 ¢m. The nozzle
holder was designed to accommodate four different nozzles
which produce water columns of varying diameters. As shown
in the detail drawing of Fig. 1, in cach nozzie the flow is tirst
lead through a wire-mesh section in order to damp out
potential disturbances originating from upstream. Water
volumns of ditterent heights and diameters were estabhished
between the nozzle and the round table. Note that the tabie
surface has a slight spherical curvature in order 1o present the
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Experimental apparatus

The parametric domain covered by the experiments is
described in terms of two dimensionless groups,
_ pu'):rn

W= , the Weber number ()

_ Pg’o:

B ., the Bond number (2)
where p, g, w,. r,, and T represent liquid density,
gravitational acceleration, liquid velocity at the nozzle exit,
nozzle radius, and water-air surface tension, respectively. We
varied the Weber number by changing the flow rate: although
the Weber number attained in the experiment depends on
nozzle size, it falls consistently in the range of 0.1-4. The
Bond number was varied from 0.085 to 1.37 by changing the
nozzle size (the four nozzle diameters were 0.159 cm, 0.138
c¢m, 0.476 cm and 0.635 cm). The Revnolds number based on
conditions at the no:zle exit, 2ryu,. v, varied from 450 to
1100. The velocity profile in the water jet immediately below
the nozzle was measured recently by Yamaguchi and
Takahashi [17]: their Laser-Doppler measurements showed
that the velocity profile becomes tlat within a longitudinal
distance of order r, downstream from the nozzle exit.
Therefore, in discussing the present experiments it is assuined
that the velocity is approximately uniform in each jet cross-
section.

Each experimental run was conducted as follows: first, we
tixed the two parameters (H°,B8) by selecting a certain nozzle
and by keeping the flowrate constant (note that the water
reservoir level could be inaintained by replenishing the water
supply during the run). The table directly under the nozzle was
then lowered until a new (additional) elbow was observed in
the buckled shape of the column. The height of the table and
the counted number of e¢lbows were recorded and a
photograph of the column shape was taken. The procedure
was repeated for various Weber and Bond numbers.

Representative photographs of the buckled liquid column
are shown in Fig. 2. The experimental observations are
summarized in Fig. 4, as the total number of elbows vs. the
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Fig.2(b) B=0.34, W=23.65,2/r; =7.68

Fig. 2 Photographs showing the sinuous shape of buckled liquid
columns

dimensionless height of the column z=2*/r,. We learn that in
all cases the number of elbows increases almost linearly with
the height of the column. This conclusion is of fundamental
importance, because it points towards the existence of a
universal proportionality between column diameter and
buckling wavelength.

B = Bond number given by T =
(Pg"n:)/r i, =

D = water column diameter el

g = gravitational acceleration W = Weber

r, = nozzleradius (o1, r )

Re = Reynolds number, 2r u,, /v : o=

470/ Vol. 105, DECEMBER 1983

number
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Wer-air surtace tension
liquid velocity at the nozzle

given

hetght ot the water column

)

\ = buckhng wavelength
o= density
kinematic viscositn

Superscript

dimensional quanuty

Transactions of the ASME




Fig.3(a) B8=0.34, W=0.59,2/rg =9.4

Fig.3(b) B=0.77,W=1.77,2lrg =75

3 The Two-Dimensionality of the Buckled Shape

An important question arises in connection with the
buckled shape of the liquid column: is this shape two-
dimensional, i.e., in one plane, as the buckled shape of an
elastic rod, or is it helical? In the course of photographing the
columns displayed as Figs. 2(a, b), the liquid column
exhibited the tendency to buckle in a way which made it
visible only from a special direction. Indeed, the camera
which recorded Figs. 2(a. b) had to be positioned so that the
buckled shape appeared most visibly on film. However, in
addition to plane buckling, tall columns showed a tendency to
davelop an axisymmetric (varicose) deformation at the lower
end. near the round table serving as obstacle. It is important
to establish whether this axisymmetric deformation is an
intezral part of the plane buckling phenomenon or aimphy a
retlection ot the ceometric synumetry imposed by the obstacle
on the hiquid column,

In order to answer these questions, we conducted an ad-
dittonal sertes of expenmental observattons reported here via
Figs, 2u-3¢. The buckled oolumn was  photographed
simultaneously trom the front and from the side. by using a
vertical marror whose plane made a 45 deg angle with the
cammeria-column direction. In ks, 3¢-3¢ the direct ttront)

Journal of Fluids Engineering

Fig.3(c) 8=0.77,W=1.77,2irq =6.5

Fig. 3 The plane buckled shape ot the liquid column. Left side: the
direct view, right side: the side view through the mirror

view appears on the left side, while the mirror (side) view
appears on the right side of the photographs. To focus on the
column and its mirror image at the same time, the mirror had
to be positioned no farther than 1 cm away trom the liquid
column. As the obstacle we used an asvmmetric object,
namelyv, the flat end of a screwdriver. The flat end was
positioned so that is made approximately a 10-degree angle
with the horizontal plane (see Figs. 3u-3¢).

Figures 3a-3¢ show ery clearly that the liquid column
prefers to buckle in a plane. The view from the direction
normal to this preterred plane reveals a nearly straight
column.

In conclusion. the svmmetric (varicose) or asvmetric
(sinuous) deformation ot the liquid column depends on the
degree of asymmetry of the obstacle. If the obstacle is from
the side, as in Figs. 3a-3¢, then the column buckles into a
plane sinuous shape. If, on the other hand, the obstacle 1s
symmetric (i.e., the same when seen from all directions) then
the deformation tends to be symmetric also.

4 Discussion of Results

The total number of elbows measured expenimentaly is
shown in Figs. 4a-4d. Each figure shows the total number of
¢lbows as a function of column height 7 (dimensionless), for
various values of B and W' In each experiment the Bond
number is fixed: it was observed that below a critical Weber
number the vertical column breaks up into droplets right
under the nozzle, and that the buckled shape is most visible in
the range where W is slightly higher than this critical value.
The experimental observations summarized in Figs. dag-4d
have been performed in this optimum range of Weber
numbers.

The measurements indicate that the number of elbows of
the buckied column increases almost linearly with the heeht
of the column, thus suggesting a local proporticnality bet-
ween buckling wavelength N and column diameter D, The
Weber number appears 10 have only a weak intluence on the
measurements ot Figures 4a-4d. The Bond number ettect s
more noticeable, as the number of elbows Tor 2= constant
increases as the Bond number | nereases: Thas dependence is
dlustrated in Fig, 8.

I he proportionality between A and £ s illustrated turther
m bFies, 6 and T In ogeneral, both D and A decrease as the

DECEMBER 1983, Vol. 103/471

o a.A &

Aa Aoa_ -

PO WS N Y

A A Aa




T PSS AR M Sl g Sefl b 1 AR A A B~ A MV R A - A RS il D S e A A it T At e Rttt B i B
ELBOW NUMBER ELBOW NUMBER
10 10
Q “""T“"sl T T Qo — - 5-—7- —_—— —
] 7 WsLS i O W20.42
- —
t g | =z
:o 0 A We28 gL E A W=1.20
~N ' o= = a
N . Uncertainty in 2/re ) c Z wa3.26
- 5- 5 . 5" = Uncertaln?y inz/r,
N : £ e
z - & z L e
ol 3 ) = :
2 lo- 3 (0-
3 . ]
S - = ! o
Q . 2> (3]
T o) ‘ -
15 - 15
Fig. 4(a) B8=0.085=0.001 (uncertainty in zirg = £0.5, in W=15x0.2, Fig. &(c) B=0.77 =0.01 (uncertainty in zirp = 20.25, in W =0.42 = 0.04,
28203 1.20:0.12, 3.26 £ 0.33)
ELBOW NUMBER ELBOW NUMBER
L1 10 5 10
0’ T T v T T ﬁ o T v T v v M {
L !
; °© W=0.79 . C ws0.18 !
< | & wa2.19 , 0 8 2 wsl.l0
}
MLE C wa3.79 N 3 ) g
3 = * A Uncertainty in z/r6
- e o - 3 .
z 5 o Uncertainty in 2/rs | ; 5; S A ;
] € : ! pd i 3 ° :
=0 ‘ | £ 7 e
| [A] I r |
Z r 8 ; z I‘,— ;
210 2 4 3o~ !
o | © ! o i
© ) ! o I ‘r
" o | I
o L (
15 15—
Fig. 4(b) B=0.340-0.001 (uncertainty in 2lrg= =05, in Fig. 4d) B=1.37=0.02 (uncertainty in 2/rg = =0.25, in W =0.18 = 0.02,
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Fig.4 Total number of elbows as a function of column height

water column is accelerated downward (Figs. 2, 3) however,
the measured ratio MD appears to be independent of the
vertical position along the column (Fig. 6). For this reason, in
Figure 7 we show only the /D measurements taken from the
upper section of each column, where the first buckling takes
place. The D ratio is largely insensitive to changes in both
Weber number and Bond number. Indeed, in the W-B range
documented by our experiments, the wavelength/diameter
ratio appears to be a universal constant of order 1.5. Figure 7
shows also Lienhard’s {12] theoretical curve and MD
measurements for the axisymmetric (varicose) deformation:
note that  Lienhard's data merge with the present
measurements in the vicinity of B =0(1), and that Lienhard’s
theoretival waselength of the varicose shape appears to be
consistent with both sets of data. However, Lienhard's theory
does not account for the sinuous (nonasisymmetric) shape
documented by the present experiments, nor does it account
for the apparent constancy of the MD ratio of buckled
(~inuous) shapes.
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We teel that the universal proportionality between buckling
wavelength and column diameter is of fundamental interest
for the following reasons. First, a similar N~D propot-
tionality is also exhibited by highly viscous fluid filaments,
such as honey and corn syrup falling and folding on a
horizontal surface (see the photographs of Cruickshank (14)
and Cruickshank and Munson [15], where the folding
wavclength is greater when the filament is thicker; the same
scaling is revealed while experimenting with honev filaments
of increasing thickness). The present experiments demonstrate
that the buckling phenomenon and the A~ D scabing law are
not restricted to highly viscous columns,  as oninails
thought, rather, they are observed even when “inviscid' flud
columns impinge on an obstacle. The buckling of inviscid
columns was linked theoretically to the origin of turbulence
[16]. Thus, the present measurements confirin not only the
possibility  of  “buckling™ in invisad  jets,  predicted
theoretically (16], but also the accuracy of the theoretial
buckling wavelength, A-D = 7 2= 1,57 [16).
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Finally, the agreement between the buckling theory of
reference (16] and the D data of Fig. 7 is thought-
provoking, because the theory neglects the effect of surface
tension, while the W =0(1) data correspond to cases where the
surface tension effect is not negligible. At this stage, the
agreement between theory and experiment suggests only that
surfaces tension is not a major consideration in ‘*buckling”’
(i.e., in the rotational equilibrium condition of a necarly
straight column {16]). Whether or not this suggestion is
correct can be decided by including surface tension in the
buckling theory (this remains to be done) and by extending the
present experiments to document the Weber number domain
below W =0(1). Note that recent experiments with fast
capillary jets in the high Weber number range 10° ~ {0* [18]
support the buckling theory of inviscid jets [16, 19].
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disturbances.

1 Introduction

The concept of *‘fluid buckling’’ is relatively new in fluid
mechanics research: during the past decade it has been used
with increasing frequency to account theoretically for a
number of flow phenomena, the explanation of which ap-
pears to shed new light on the theoretical origins of turbulence
(Cruickshank [1], Bejan [2], Munson {3]). In the present
paper, the buckling concept is used to describe a series of
experimental observations of how a sheet of viscous fluid
wrinkles as it is compressed from one end. As shown in Fig. I,
the fluid buckles and assumes a sinusoidal shape with
characteristic wavelength A. The objective of this experiment
is to measure the buckling wavelength and to learn how this
wavelength is influenced by the geometry (slenderness) of the
fluid layer, the tluid properties and the rate of compression.

The buckling of highly viscous fluids was first studied by
Biot [4]. In a series of papers, Biot developed the equations to
describe the buckling of a multilayered viscous fluid. The
equations were solved and were shown to be unstable when
the viscous layers were subjected to an arbitrary finite strain
with a small perturbation superimposed on the initial state.
Solutions were determined numerically and were found to
agree with solutions given by the theory of elasticity and
viscoelasticity when the instability was of a significant
magnitude. Biot’s work was motivated by applications to the
problems of tectonic folding of stratified geologicai struc-
tures.

The instability of jets, threads, and sheets ¢f viscous fluids
was studied qualitatively by Taylor (5]. In his paper, Tavlor
argues that the instability created by the compression of
viscous fluids is the same as the Euler buckling ol solid
columns. Of the many experiments he conducts, two are
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Experiments on the Buckling of
Thin Fluid Layers Undergoing
End-Compression

This paper reports a series of experiments concerning the buckling of a slender fluid
layer in a state of longitudinal compression. The experiments consist of floating a
layer of highly viscous oil on a pool of water and, manually, compressing the layer
Jrom the side. Photographs of the buckled layer show conclusively that the buckling
wavelength is largely insensitive to either the rate of compression or the viscosity of
the fluid layer. The observations suggest that the buckling wavelength is actuallv a
characteristic length scale (a propertv) of the fluid laver, in contrast with the
buckling theory of purely viscous layers (Buckmaster, Nachman, and Ting, [7 ])
where the buckling wavelength remains to be determined randomly by initial

especially relevant to the work presented here. In one, Taylor
compresses a thread of an extremely viscous fluid floating on
mercury and compares the resultant shape with the shapes of
elastica under compression as calculated by Love [6]. The
other experiment was designed to determine when a sheet of a
viscous fluid under compression would become unstable.

With Taylor’s experimental results in mind. Buckmaster,
Nachman, and Ting [7] considered theoreticaily the buckling
of a thin viscous layer (the viscida problem). The problem was
that of a two-dimensional viscida immersed in vacuum, whose
ends are moved together slowly so that inertia terms could be
neglected. Since their analysis was not limited to small
deformations, it was a generalizaticn of Biot's work. They
derived a global equation for the evolution of the slope of the
centerline as a function of time and distance from one end, by
integrating the momentum equations over the thickness of the
viscous layer. This equation was then solved using asymptotic
expansions for the case of small centerline deviation. Based
on these results the solutions for large centerline deviations
were found numerically. The case where surface tension
effects cannot be neglected was incorporated into this theory
by Buckmaster and Nachman [8) in a subsequent paper.

In a more recent paper, Suleiman and Munson [9) in-
vestigated the buckling of a thin viscous fluid layer subjected
to linear shear. They found that if the dimensionless shear
stress exceeded a critical value, the layer would buckle in a
manner similar to the buckling of a thin clastic plate. In
another study, Munson [10] examined experimentally the
buckling of a falling viscous jet flowing out ot a vertical slit
oritice onto a horizontal plate. In this experiment Munson
observed that the jet sometimes buckles in a manner similar to
the buckling of a cantilever beam. Another experumental
study was conducted by Cruickshank and Munson {11] on the
spontaneous oscillations of a ralling viscous jet tlowing from
a horizontal orifice onto a flat plate. They determined the
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Fig. 1 Tha buckling of a thin viscous layer tioating on top of a heavier
inviscid fluid

minimum distance from the jet orifice to the flat plate for
which the jet would buckle (termed the *‘buckling height’’) as
a function of fluid and flow variables. They found that if the
flow exceeded a critical Reynolds number, the jet does not
buckle. Below this critical Reynolds number, sutface tension
becomes the dominant factor in influencing the buckling
height. The origin of buckling was attributed to the jet flow
transition from tension in the falling stage, to compression in
the deceleration stage when the jet strikes the plate.

Commenting on Suleiman and Munson’s paper, Bejan [2]
noted that the buckling phenomenon is not only a property of
highly viscous fluids, but also a property of inviscid columns
(streams), and, as such, explains the ‘‘meander”
phenomenon. The process of inviscid stream buckling was
treated analytically by Bejan (12] who showed that all inviscid
fluid layers buckle so that the wavelength is proportional to
the layer thickness only. The proportionality between
buckling wavelength and jet diameter was verified recently in
two separate experiments, one involving the meandering of air
streams driven by falling paper ribbons (Bejan [13]) and the
other focusing on the buckled shapes of fast capillary jets
(Stockman and Bejan [14)).

At this stage in our understanding of fluid buckling, an
important discrepancy exists between the observed buckling
behavior of viscous layers and the behavior predicted by the
viscida theory [7]. The theoretical wavelength of the buckled
shape is indeterminate and, presumably, dictated randomly
by the original deformation (disturbance) of the straight
layer. Experimental observations, on the other hand, seem to
suggest that the buckling wavelength is not random (1, 5, 11].
Thus, the objective of the experimental work described in this
paper is to establish whether the buckling wavelength of
viscous layers in indeterminate, as in the viscida theory, or, in
fact, a ‘‘characteristic’” length. The experiment does not
correspond fully to the geometry of Taylor [5) or Buckmaster
et al. (7, 8], however, it does shed light on the uniqueness of
the observed buckling wavelength.

2 Experiment

The experiment was designed to measure the buckling
wavelength of a viscous fluid layer and to determine quan-
titotively what parameters affect the wavelength. The ex-
periment is shown schematically in Fig. 1. A layer of viscous
fluid, floating on a relatively inviscid fluid, is compressed by
the partition. The partition extends into the inviscid fluid a
distance on the order of the viscous layer’s thickness and has a
rate of compression u. The geometrical shape of the layer is
given by the slenderness ratio L/d where L and 4 are the
length and thickness of the unbuckled layer. The slenderness
ratio was varied from about 20 to 70 by changing the
thickness of the layer and leaving the length constant.

The experiment was carried out in an aluminum box with
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inside dimensions measuring 20.3 cm in length, 7.6 c¢m in
width and 10.2 ¢cm in depth. The sides of the box serve as a
track for a sliding mechanism carrying a partition (gate)
which can be lowered into the box (see Fig. 2). It is by means
of this partition that the layer is compressed. The sliding
mechanism was designed to operate without vibrations and to
hold the partition perpendicular to the viscous fluid layer and
to the walls on each side. It also holds the partition in contact
with the side walls preventing the fluid layer from escaping
behind the partition as the viscous layer is compressed.

The sliding mechanism was moved by hand; in order to
bring uniformity to the results, two stops were positioned to
set the initial length L and to control the maximum excursion
of the partition. As the sliding mechanism moved between the
stops, it passed over a microswitch sending an electrical pulse
to a timer and, at the same time, triggering the camera. The
duration of the pulse was used to make a time of flight
measurement, and with the assumption that the partition
undergoes a constant acceleration, it was possible to deter-
mine the rate of compression at any instant. The accuracy of
the velocity measurement is determined by the constant ac-
celeration assumption. Since the compression stroke is very
short (13 to 32 milliseconds) and the force applied by hand
during that interval is approximately constant, the ac-
celeration is also approximately constant.

Experiments were run to determine the effects of the ex-
cursion length and rate of compression on the buckling
wavelength. In varying the excursion length, it was found that
there exists an optimum range of lengths for the most accurate
portrayal of the buckling phenomenon. This range was from 1
cm to 2 cm. If the excursion length was less, there was no
visible buckling, and if it was greater, the buckling became so
pronounced that the ‘‘waves’’ would collide, The effect of the
rate of compression is discussed in greater detail in the next
section.

It is important to note that although the buckled layer has
the appearance of a propagating gravity wave, it is not. This is
demonstrated by the observation that after the partition has
stopped, the buckled shape remains stationary. In time, the
amplitude decreases and eventually the laver reaches
equilibrium again. In many cases the buckled shape and its
wavelength remained visible and could be photographed for
up to 30 minutes after the compression stroke. As shown in
section 4, the observation that the amplitude of the buckled
shape decreases away from the moving partition (Figs. 3, &
can be explained by the fact that the laver is not uniformly
compressed. The nonuniform compression rate can be due to
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Fig.3 Photograph showing the buckled layer as seen from above (the
partition moves from left to right)

the no-slip condition along the side wall, or to the inertia of
the fluid layer itseif.

The buckling wavelength was measured photographically
using a camera triggered by the trailing edge of the pulse
created by the microswitch. Special lighting conditions were
needed in order to make the buckling wavelength easy to
measure on the photographs (Blake [15]). This system enabled
one side of a ‘‘wave crest’’ to be illuminated while leaving the
other side in darkness. The photograph then contained a series
of light and dark bands where one light and one dark band
together account for one wavelength. The sample photograph
shown in Fig. 3 has three bands, implying that the buckled
region extended one and one half wavelengths into the viscous
fluid layer. The other photographs contained between two
and five bands (see also Fig. 4).

In all the experiments involving data acquisition, Dow
Corning 200 silicone oil was used as the viscous fluid and
distilled water as the inviscid substance. The silicone oil has
several desirable attributes such as its small variation in
viscosity with temperature, its low surface tension, its im-
miscibility with water, and its availability over a wide range of
high viscosities. In addition, any intermediate viscosity can be
achieved simply by mixing a higher and lower viscosity in the
proper proportions. Since, as shown in the next section, the
buckling wavelength is not strongly dependent on viscosity, it
was not necessary to know the precise viscosity, therefore, the
oil viscosity reported in these experiments is the viscosity
calculated based on Dow Corning information. Furthermore,
the experiments were run at room temperature, which is
within a few degrees of the temperature (75°F) at which the
viscosity was measured. The viscosity of the silicone oil used
in the experiments ranged from 10° to 10° centistokes (cSt)
where one centistoke is approximately the viscosity of water
and the units of stokes are centimeters squared per second.
Lastly, the silicone oil was demonstrated to be a Newtonian
fluid by Suleiman and Munson [9].

To set up the experiment, a flat, uniform layer of the
viscous fluid, of a prescribed thickness, must be placed on the
surface of the water. The method used was to put the silicone
oil in a standard 100 ml burret with the following
modifications: the tapered end of the burret was ground off,
and the hole in the valve was drilled out to be the same size as
the tube. The burret was held about & centimeter above the
surface of the water and the oil was allowed to drain out until
the desired thickness was obtained. Depending on the
viscosity, it took from one to five hours to drain out the
required amount. This extremely slow pouring rate allowed
the oil to slowly creep across the surface of the water
providing a f1at, smooth layer. Knowing the volume of oil and
the area of the layer, the thickness d could be calculated to an
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Fig. 4a) d=.394+.003 cm, L=16.35+.03 cm, u=42.3+.2 cm/s,
»=10" + 400 cSt

Fig. 4b) d=.264+.003 cm, L=16.35+.03 cm, u=32.6=.2 cmis,
»=10% + 4000 ¢St
Fig.4 Two separate experimental runs:

accuracy of 0.003 ¢m with most of the error resulting from the
meniscus on the edges of the oil layer.

Since the experiment sometimes took days to run, de-
aerated (distilled) water was needed for the lower fluid.
Otherwise bubbles of air would form under the layer of oil
creating little bumps in the surface.

4 Results

Despite the fact that in the present experiment the motion
of the position is not mechanized, it is important to document
the effect of changes in the rate of compression u. It is also
important to report the minimum rate of compression
necessary for buckling the layer. Referring to buckling in a
purely two-dimensional layer geometry, Taylor [5] stated that
when

—dued-T>0 H

the viscous sheet is unstable to disturbances of any
wavelength, where u and ¢ are the viscosity and the rate of
strain. The total surtace tension T is the sum of the oil-air
interface T,, and the water-oil intertace T,,. For two im-
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miscible liquids, the value of T, is approximately T,, — Toss
where T, is the surface tension of the water-air interface
(Suleiman and Munson [9), Davies and Rideal [16]).
Therefore, T=T,, + (T.,—To) = T.,, that is, the total
surface tension T is just the surface tension of the water-air
interface. Upon substituting —u/L for ¢ in Taylor’s equation
and rearranging, it is found that the layer buckles when

A(pvu/ N/ (L7d)> 1 (#3)

It should be noted that Taylor's conclusions do not apply
exactly to the present experiment. As shown i.. Figs. Jand 4,
the no-slip condition along the side walls gives rise to a three-
dimensional flow such that only the middle portion of the
buckled layer shows parallel waves and can be regarded
approximately as two-dimensional. Therefore, the sub-
stitution e= —u/L used to derive equation (2) can only be
approximately valid. That —u/L is not the rate of strain
everywhere in the layer is demonstrated by the fact that
buckling does not occur throughout the layer but only near
the compressed end. Figures 3 and 4 show that sufficiently
close 1o the partition, the bands (waves) are relatively constant
size. hence, it is reasonable to assume that in that region the
rate of strain is relatively constant. In cases where the
photographed bands are unequal in size, the reported
wavelength was calculated by averaging the first two bands.

For this experiment the viscous fluid layer had a slenderness
ratio (L/d) of 25, a viscosity (v} of 3 x 10* cSt, a density (p) of
0.975 g/cm’, and a surface tension (T) of 72.8 dyne/cm. The
tesults of the experiment are given in terms of the buckling
wavelength to thickness ratio M d versus 4(pvu/T)/(L/d) and
graphed as shown in Fig. 5. The data fall into two categories:
points where the fluid buckled and points where the fluid did
not. The cases in which buckling did not occur have no \/d
value and are indicated with short vertical lines at the bottom
of the graph. The large vertical line indicates the approximate
minimum value of d(prues D/ (L/d) that will buckle the layer.
This value is approximately 7, i.e.. greater than the value |
appearing in cquation (2* derived trom Taylor’s buckling
criterion (1). This discrepancy is not surprising in view of the
three-dimensional effects and nonuniform e that distinguish
the present experiment from Taylor's two-dimensional
2eUINCIFY.

An important result of the present experiment is the in-
dependence of A/d on the rate of compression, as witnessed
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by the nearly horizontal distribution of the data on Fig. 5. The
data was limited on the right by the inability to compress the
layer at a faster rate. This conclusion is further supported by
the results given in Fig. 6 where each datum is an average
obtained from three different rates of compression. In each
set of three, the group 4(pvu/ T)/(L/d) varies with an average
$5 percent increase from the smallest to the largest value.
However, the corresponding values of A/d only have an
average 5 percent increase, as indicated approximately by the
size of the circles. Thus for a variety of L/d ratios and
viscosities it can be seen that the sizable change in
3(pwu/ TY/ (L/d) has only a marginal, if any, effect on A/d.

To determine the relationship between the buckling
wavelength and the slenderness ratio, a series of experiments
were conducted varying the thickness of the layer and using
different viscosity oils. The data were obtained in the
following manner. The partition was placed at the maximum
distance from the far end so that L =16.4 cm. The box was
filled with water and then a thin layer of oil was poured cnto
the water surface from the burret. To obtain diiferent
slenderness ratios more oil was added from the burret, and
allowed to reach equilibrium. For cach slenderness ratio the
layer was usually compressed three times. Between each
compression the partition was moved back to its inital
position and the oil layer was given enough time to reach
equilibrium again. For each change in viscosity, the burret
was drained of the previous oil and the new viscosity oil was
poured in.

The results of these experiments are graphed as \/d versus
L/d in Fig. 6. The plot contains three sets of points indicated
by an open circle and right and left half-filled circles for
viscosities of 10* ¢St, 10%cSt, and 10%cSt, respectively. It is
clear from Fig. 4 that A/d is dependent on L/d. For L/d less
than 40 the slopes of the curves are almost unity, indicating
that \ is proportional to L. Due to the construction of the
experimental apparatus, the value of L/d could not be in-
creased bevond 65.

The effect of viscosity on the buckling wavelength can also
be interpreted from the data in Fig. 6. The value ot \d
decreases by about one-third when changing the viscosity
from 10° ¢St to 10° ¢St and keeping L/d constant. Thie
change is fairly consistent throughout the range ot values o1
L/d. Within this range, then, the effect of viscosity on Ard s
seen to be very slight.

The crror in the results presented here is governed primarily
bv the measured value ot A. The variables d. L. and u have all
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been calculated to within 1 percent. The other variables in-
fluencing the results, although unknown precisely, remain
constant throughout each experiment and therefore do not
effect the overall trends shown in the graphs.

5 Conclusions

The object of this experimental report has been to present a
series of observations concerning the buckling wavelength of
a highly viscous fluid laver undergoing end-compression. The
motivation for designing and running these experiments
stemmed from the unresolved issue of whether the buckling
wavelength is arbitrary (as in the viscida theory, Buckmaster
et al. [7]), or a characteristic length of the layer. Based on the
measurement produced by the present study, the following
conclusions may be drawn:

1 In a fluid layer of fixed geometry and viscosity, the
buckling wavelength is practically independent of the rate of
compression, that is, independent of the layer velocity relative
to the fluid ambient (Fig. 5).

2 The viscosity of the buckled layer has only a minor
impact on the buckling wavelengih (Fig. 6).

3 Intherange L/d < 100 the buckling wavelength A scales
with the length of the compressed layer, L (Fig. 6).

In view of these findings, the wavelength of a buckled
viscous layer emerges as a property of the layer (a charac-
teristic length), as opposed to the undetermined length dic-
tated by random initial disturbances assumed in the viscida
theory.
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